
Interactive System Productivity Facility (ISPF)

Services Guide
z/OS Version 2 Release 2

SC19-3626-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 421.

Edition notice

This edition applies to ISPF for Version 2 Release 2 of the licensed program z/OS (program number 5650-ZOS) and
to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. For information on how to send comments, see “How to send your comments to
IBM” on page xvii.

© Copyright IBM Corporation 1980, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures ix

Preface xi
Who should use this document? xi
What is in this document? xi
How to read the syntax diagrams xi

z/OS information xv

How to send your comments to IBM xvii
If you have a technical problem xvii

Summary of changes xix
Summary of changes for z/OS Version 2 Release 2
(V2R2) xix
Summary of changes for z/OS Version 2 Release 1
(V2R1) xix

What's in the z/OS V2R2 ISPF library? xxi

Chapter 1. Introduction to ISPF services 1
Description of the services 1
Using ISPQRY to test whether ISPF is active 2
Invoking the ISPF services 2

Load module search order 3
Invoking services from command procedures . . 3
Invoking ISPF services with program functions . . 5

Return codes from services 13
Command invocation return code variable . . . 13
Call invocation return code variables 13
Return code of 12 or higher 14
System variables used to format error messages 14
Return codes from I/O and command routines 15

A summary of the ISPF services 15
Display services 15
File tailoring services 16
Library access services. 16
PDF component services 18
Table services. 18
Variable services 19
Miscellaneous services 20

Chapter 2. Description of the ISPF
services 23
ADDPOP—start pop-up window mode 23

Command invocation format 23
Call invocation format 23
Parameters 24
Return codes 24
Example 24

BRIF—Browse interface 25
Command invocation format 26
Call invocation format 26

Parameters 26
Dialog-supplied routines 27
Return codes 29
Example 30

BROWSE—browse a data set 30
Command invocation format 30
Call invocation format 31
Parameters 31
Return codes 33
Example 33

CONTROL—set processing modes. 34
Command invocation format 34
Call invocation format 35
ADDPOP/REMPOP service in relation to
CONTROL service 36
Parameters 36
Return codes 42
Examples 42

DIRLIST—directory list service 43
Command invocation format 43
Call invocation format 43
Parameters 44
Return codes 48
Example 48

DISPLAY—display panels and messages. 48
Command invocation format 49
Call invocation format 49
Parameters 49
Using the COMMAND Option 51
Return codes 52
Examples 53

DSINFO—data set information dialog service . . . 55
Command invocation format 55
Call invocation format 55
Parameters 55
Return codes 57
Example 57

EDIF—Edit interface 58
Command invocation format 58
Call invocation format 58
Parameters 59
Dialog-supplied routines 61
Return codes 63
Example 64

EDIREC - Initialize Edit Recovery 65
Command invocation format 65
Call invocation format 65
Parameters 65
Return codes 66
Example 66

EDIT—edit a data set 66
Command invocation format 67
Call invocation format 69
Parameters 69
Return codes 73
Examples 73

© Copyright IBM Corp. 1980, 2015 iii

EDREC—specify edit recovery handling 74
Command invocation format 75
Call invocation format 75
Parameters 75
Return codes 77
Examples 78

FILESTAT—statistics for a file 79
Command invocation format 79
Call invocation format 79
Parameters 79
Return codes 79
Example 80

FILEXFER—upload or download file 80
Command invocation format 80
Call invocation format 81
Parameters 81
Return codes 83
Example 83

FTCLOSE—end file tailoring. 83
Command invocation format 84
Call invocation format 84
Parameters 84
Return codes 84
Example 85

FTERASE—erase file tailoring output 85
Command invocation format 85
Call invocation format 85
Parameters 85
Return codes 86
Example 86

FTINCL—include a skeleton. 86
Command invocation format 86
Call invocation format 86
Parameters 87
Return codes 87
Example 87

FTOPEN—begin file tailoring 88
Command invocation format 88
Call invocation format 88
Parameters 88
Return codes 89
Example 89

GETMSG—get a message. 89
Command invocation format 90
Call invocation format 90
Parameters 90
Return codes 91
Example 91

GRERROR—graphics error block service 91
Command invocation format 91
Call invocation format 92
Parameters 92
Return codes 92

GRINIT—graphics initialization 92
Command invocation format 93
Call invocation format 93
Parameters 93
Return codes 94
Example 94

GRTERM—graphics termination service 94
Command invocation format 94

Call invocation format 94
Return codes 94

LIBDEF—allocate application libraries 94
Application data element search order 96
Command invocation format 98
Call invocation format 98
Parameters 98
Usage notes 101
Return codes 105
Examples 105

LIST—write lines to the list data set 109
Command invocation format 109
Call invocation format 110
Parameters 110
Return codes 111
Formatting data to be written to the list data set 111
List data set characteristics affect the LIST
service 111
Controlling line spacing, page eject, and
highlighting 112
How carriage control characters affect truncation 113
Examples 113

LMCLOSE—close a data set 115
Command invocation format 115
Call invocation format 115
Parameters 115
Return codes 115
Example 116

LMCOMP—compresses a partitioned data set . . 116
Command invocation format 116
Call invocation format 116
Parameters 116
Return codes 117
Example 117

LMCOPY—copy members of a data set. 117
Command invocation format 118
Call invocation format 118
Parameters 119
Return codes 120
Example 121

LMDDISP—data set list service 121
Command invocation format 121
Call invocation format 122
Parameters 122
Return codes 123
Example 124

LMDFREE—free a data set list ID 124
Command invocation format 124
Call invocation format 124
Parameters 124
Return codes 125
Example 125

LMDINIT—initialize a data set list 125
Command invocation format 125
Call invocation format 125
Parameters 126
Return codes 126
Examples 126

LMDLIST-list data sets 128
Command invocation format 128
Call invocation format 129

iv z/OS V2R2 ISPF Services Guide

Parameters 129
Return codes 131
Examples 132

LMERASE—erase a data set 133
Command invocation format 134
Call invocation format 134
Parameters 134
Return codes 135
Example 135

LMFREE—free data set from its association with
data ID 136

Command invocation format 136
Call invocation format 136
Parameters 137
Return codes 137
Example 137

LMGET—read a logical record from a data set . . 137
Command invocation format 138
Call invocation format 138
Parameters 138
Return codes 139
Example 1 140
Example 2 140
Example 3 (MULTX) 141

LMINIT—generate a data ID for a data set . . . 142
Command invocation format 143
Call invocation format 143
Parameters 144
Return codes 146
Examples 146

LMMADD—add a member to a data set 147
Command invocation format 148
Call invocation format 148
Parameters 148
Return codes 150
Example 150

LMMDEL—delete members from a data set . . . 150
Command invocation format 151
Call invocation format 151
Parameters 151
Return codes 152
Example 152

LMMDISP—member list service 152
Dialog variables 153
DISPLAY option 154
GET option 157
PUT option 159
ADD option 161
DELETE option. 163
FREE option. 164

LMMFIND—find a library member 165
Command invocation format 165
Call invocation format 166
Parameters 166
Return codes 169
Example 169

LMMLIST—list a library's members 170
Command invocation format 170
Call invocation format 170
Parameters 171
Return codes 172

Examples 172
LMMOVE—move members of a data set 174

Command invocation format 175
Call invocation format 175
Parameters 176
Return codes 177
Example 177

LMMREN—rename a data set member 178
Command invocation format 178
Call invocation format 178
Parameters 178
Return codes 179
Example 179

LMMREP—replace a member of a data set . . . 180
Command invocation format 180
Call invocation format 180
Parameters 180
Return codes 181
Example 182

LMMSTATS—set and store, or delete ISPF statistics 182
Command invocation format 182
Call invocation format 183
Parameters 183
Return codes 185
Example 185

LMOPEN—open a data set 186
Command invocation format 186
Call invocation format 186
Parameters 187
Return codes 187
Example 188

LMPRINT—print a partitioned or sequential data
set 188

Command invocation format 188
Call invocation format 188
Parameters 189
Return codes 189
Example 190

LMPUT—write a logical record to a data set . . . 190
Command invocation format 190
Call invocation format 191
Parameters 191
Return codes 192
Example 192
Example (MULTX) 193

LMQUERY—give a dialog information about a
data set 193

Command invocation format 193
Call invocation format 194
Parameters 194
Return codes 196
Example 196

LMRENAME—rename an ISPF library 197
Command invocation format 197
Call invocation format 197
Parameters 197
Return codes 198
Example 198

LOG—write a message to the log data set 199
Command invocation format 199
Call invocation format 199

Contents v

Parameters 199
Return codes 199
Example 1 199
Example 2 199
Example 3 200

MEMLIST—member list dialog service 200
Command invocation format 200
Call invocation format 200
Parameters 201
Return codes 201
Example 202

PQUERY—obtain panel information 202
Command invocation format 202
Call invocation format 202
Parameters 203
Return codes 204
Example 204

QBASELIB—query base library information . . . 204
Command invocation format 204
Call invocation format 204
Parameters 205
Return codes 205
Example 205

QLIBDEF—query LIBDEF definition information 206
Command invocation format 206
Call invocation format 206
Parameters 206
Return codes 207
Example 207

QTABOPEN—query open ISPF tables 207
Command invocation format 207
Call invocation format 208
Parameters 208
Return codes 208
Example 208

QUERYENQ—query system ENQ data 208
Command invocation format 208
Call invocation format 208
Parameters 209
Variables returned in each row of the table . . 210
Return codes 210

REMPOP—remove a pop-up window 210
Command invocation format 210
Call invocation format 211
Parameters 211
Return codes 211

SELECT—select a panel or function 211
Command invocation format 212
Call invocation format 212
Parameters 212
Return codes 218
Examples 218

SETMSG—set next message 219
Command invocation format 220
Call invocation format 220
Parameters 220
Return codes 221
Example 1 221
Example 2 221

TBADD—add a row to a table. 222
Command invocation format 223

Call invocation format 223
Parameters 223
Return codes 224
Example 1 224
Example 2 224

TBBOTTOM—set the row pointer to bottom . . . 225
Command invocation format 225
Call invocation format 225
Parameters 225
Return codes 226
Example 226

TBCLOSE—close and save a table 226
Command invocation format 227
Call invocation format 227
Parameters 227
Return codes 228
Example 228

TBCREATE—create a new table 229
Command invocation format 229
Call invocation format 229
Parameters 230
Return codes 231
Examples 231

TBDELETE—delete a row from a table 232
Command invocation format 232
Call invocation format 232
Parameters 232
Return codes 232
Example 233

TBDISPL—display table information 233
TBDISPL operation 234
Operational results from user actions 234
Command invocation format 236
Call invocation format 236
Parameters 236
Parameter processing 238
Return codes 239
Example 240
System variables related to TBDISPL 240
Panel control variables related to TBDISPL . . 242
Parameter variables related to TBDISPL . . . 242
Using TBDISPL with other services 243
Techniques for using the TBDISPL service . . . 244
Rules applying to variable model lines 246
Example—using the TBDISPL and TBPUT
services 252
TBDISPL summary 257

TBEND—close a table without saving 260
Command invocation format 260
Call invocation format 260
Parameters 260
Return codes 260
Example 261

TBERASE—erase a table. 261
Command invocation format 261
Call invocation format 261
Parameters 261
Return codes 262
Example 262

TBEXIST—determine whether a row exists in a
table 262

vi z/OS V2R2 ISPF Services Guide

Command invocation format 262
Call invocation format 262
Parameters 263
Return codes 263
Example 263

TBGET—retrieve a row from a table 263
Command invocation format 264
Call invocation format 264
Parameters 264
Return codes 265
Example 265

TBMOD—modify a row in a table 265
Command invocation format 266
Call invocation format 266
Parameters 266
Return codes 267
Example 267

TBOPEN—open a table 267
Command invocation format 267
Call invocation format 268
Parameters 268
Return codes 269
Example 269

TBPUT—update a row in a table 269
Command invocation format 269
Call invocation format 269
Parameters 270
Return codes 270
Example 270

TBQUERY—obtain table information 271
Command invocation format 271
Call invocation format 271
Parameters 272
Return codes 272
Example 273

TBSARG—define a search argument. 273
Command invocation format 274
Call invocation format 275
Parameters 275
Return codes 276
Examples 276

TBSAVE—save a table 277
Command invocation format 277
Call invocation format 278
Parameters 278
Return codes 279
Example 279

TBSCAN—search a table 279
Command invocation format 280
Call invocation format 280
Parameters 281
Return codes 282
Examples 283

TBSKIP—move the row pointer 284
Command invocation format 284
Call invocation format 284
Parameters 284
Return codes 285
Example 286

TBSORT—sort a table 286
Command invocation format 286

Call invocation format 287
Parameters 287
Return codes 288
Example 1 288
Example 2 289

TBSTATS—retrieve table statistics 289
Command invocation format 290
Call invocation format 290
Parameters 291
Return codes 292
Example 293

TBTOP—set the row pointer to the top 293
Command invocation format 293
Call invocation format 293
Parameters 293
Return codes 294
Example 294

TBVCLEAR—clear table variables 294
Command invocation format 294
Call invocation format 294
Parameters 294
Return codes 295
Example 295

TRANS—translate CCSID data 295
Command invocation format 295
Call invocation format 295
Parameters 296
Return codes 296

VCOPY—create a copy of a variable. 296
Command invocation format 297
Call invocation format 297
Parameters 297
Return codes 298
Example 298

VDEFINE—define function variables 298
Command invocation format 299
Call invocation format 299
Parameters 299
Return codes 303
Examples 304
VDEFINE exit routine 305

VDELETE—remove a definition of function
variables 308

Command invocation format 308
Call invocation format 308
Parameters 308
Return codes 309
Example 309

VERASE—remove variables from shared or profile
pool 309

Command invocation format 309
Call invocation format 309
Parameters 309
Return codes 310
Example 310

VGET—retrieve variables from a pool or profile or
system symbol 311

Command invocation format 311
Call invocation format 311
Parameters 311
Return codes 312

Contents vii

Examples 313
VIEW—view a data set 313

Command invocation format 314
Call invocation format 316
Parameters 316
Return codes 319
Examples 319

VIIF—View interface 321
Command invocation format 321
Call invocation format 321
Parameters 322
Dialog-supplied routines 324
Return codes 327
Example 327

VMASK—mask and edit processing 328
VMASK call invocation 328
Parameters 329
Return codes 331
Example 331
The VEDIT statement. 331

VPUT—update variables in the shared or profile
pool 331

Command invocation format 331
Call invocation format 331
Parameters 332
Return codes 332
Example 332

VREPLACE—replace a variable 333
Command invocation format 333
Call invocation format 333
Parameters 333
Return codes 333
Example 334

VRESET—reset function variables 334
Command invocation format 334
Call invocation format 334
Return codes 334
Example 334

VSYM—resolve system symbols 334
Command invocation format 334
Call invocation format 335
Parameters 335
Return codes 335
Example 335

WSCON—connect to a workstation 335
Command invocation format 336

Call invocation format 336
Parameters 336
Return codes 338
Example 338

WSDISCON—disconnect from a workstation . . . 339
Command invocation format 339
Call invocation format 339
Parameters 339
Return codes 339
Usage notes 339

Appendix A. JSON API 341
JSON data structures and variables used to
communicate between ISPF and a client 341
JSON data structures sent from TSO to client
(message type 2) 341

TSO Message JSON 341
TSO prompt JSON. 342

JSON data structures sent from ISPF to client
(message type 3) 343

ISPF panel display JSON 343
ISPF action JSON 409

JSON data structures sent from client to TSO
(message type 7) 410

TSO user response JSON 410
TSO action request JSON 410

JSON data structures sent from client to ISPF
(message type 8) 411

User response JSON 411
Client action JSON 413

ISPF variables 414

Appendix B. Accessibility 417
Accessibility features 417
Consult assistive technologies 417
Keyboard navigation of the user interface 417
Dotted decimal syntax diagrams 417

Notices 421
Policy for unsupported hardware. 422
Minimum supported hardware 423
Programming Interface Information 423
Trademarks 423

Index 425

viii z/OS V2R2 ISPF Services Guide

Figures

1. Sample syntax diagram xii
2. Multiple Pop-up Windows 25
3. z/OS UNIX Directory List 46
4. ISPLIBD - all LIBDEF definitions 102
5. ISPLIBD ISPPLIB - ISPPLIB LIBDEF definition 103
6. ISPLIBD ISPPLIB - ISPPLIB LIBDEF stacked

definition 103
7. Variable Model Lines: Panel Definition 247
8. Variable Model Lines: Display 1 248
9. (Part 1 of 2). Variable Model Lines: Display 1 248

10. (Part 2 of 2). Variable Model Lines: Display 2 249
11. SFIHDR Keyword in Variable Model Lines:

Panel Definition. 250
12. SFIHDR Keyword in Variable Model Lines:

Panel Example 1 251
13. SFIHDR Keyword in Variable Model Lines:

Panel Example 2 251
14. Five Rows in Table TAB1 253
15. Table TAB1 as Displayed Using Panel PAN1 254
16. Table Display Panel Definition PAN1 254

© Copyright IBM Corp. 1980, 2015 ix

x z/OS V2R2 ISPF Services Guide

Preface

This document describes how to use ISPF dialog management component (DM)
services and Program Development Facility component (PDF) services.
Programmers who develop applications with ISPF can use the services described in
this publication to develop dialogs from programs or command procedures.

Who should use this document?
This document is for application programmers who develop dialogs using ISPF.
Users should be familiar with coding in CLIST, REXX, or any of the other
programming or command procedure languages supported by ISPF in the MVS™

environment.

What is in this document?
This document contains two chapters.

Chapter 1, “Introduction to ISPF services,” on page 1 describes how to invoke ISPF
services, provides an explanation of various service return codes, and lists and
summarizes all of the services described in this document.

Chapter 2, “Description of the ISPF services,” on page 23 contains this information
about each of the ISPF services:
v A description of the function and operation of the service. This description also

refers to other services that can be used with this service.
v The syntax used to code the service, showing both the command procedure

format and the call format.
v A description of any required or optional keywords or parameters.
v A description of the error codes returned by the service.
v Examples of the how the service is used to develop dialogs.

The services are listed in alphabetical order.

How to read the syntax diagrams
The syntactical structure of commands described in this document is shown by
means of syntax diagrams.

Figure 1 on page xii shows a sample syntax diagram that includes the various
notations used to indicate such things as whether:
v An item is a keyword or a variable.
v An item is required or optional.
v A choice is available.
v A default applies if you do not specify a value.
v You can repeat an item.

© Copyright IBM Corp. 1980, 2015 xi

Here are some tips for reading and understanding syntax diagrams:

Order of reading
Read the syntax diagrams from left to right, from top to bottom, following
the path of the line.

The ��─── symbol indicates the beginning of a statement.

The ───� symbol indicates that a statement is continued on the next line.

The �─── symbol indicates that a statement is continued from the previous
line.

The ───�� symbol indicates the end of a statement.

Keywords
Keywords appear in uppercase letters.

�� COMMAND_NAME ��

Sometimes you only need to type the first few letters of a keyword, The
required part of the keyword appears in uppercase letters.

��
DEFAULT_KEYWORD

KEYword
��

�� COMMAND_NAME required_variable
OPTIONAL_KEYWORD=variable

KEYWORD=default_choice

KEYWORD= choice2
choice3

�

� � repeatable_item1
fragment_name optional_choice1

optional_choice2

required_choice1
required_choice2
required_choice3

�

� �

,

repeatable_item2
DEFAULT_KEYWORD

KEYword

DEFAULT_KEYWORD��

KEYword����������
��

fragment_name:

DEFAULT_KEYWORD

KEYWORD1
KEYWORD2

�

�

KEYWORD3 KEYWORD4
(variable1)

variable2 variable3
,

(variable4 - variable5)
OPTIONAL_KEYWORD1
OPTIONAL_KEYWORD2
OPTIONAL_KEYWORD3

Figure 1. Sample syntax diagram

xii z/OS V2R2 ISPF Services Guide

In this example, you could type "KEY", "KEYW", "KEYWO", "KEYWOR" or
"KEYWORD".

The abbreviated or whole keyword you enter must be spelled exactly as
shown.

Variables
Variables appear in lowercase letters. They represent user-supplied names
or values.

�� required_variable ��

Required items
Required items appear on the horizontal line (the main path).

�� COMMAND_NAME required_variable ��

Optional items
Optional items appear below the main path.

��
OPTIONAL_KEYWORD=variable

��

Choice of items
If you can choose from two or more items, they appear vertically, in a
stack.

If you must choose one of the items, one item of the stack appears on the
main path.

�� required_choice1
required_choice2
required_choice3

��

If choosing one of the items is optional, the entire stack appears below the
main path.

��
optional_choice1
optional_choice2

��

If a default value applies when you do not choose any of the items, the
default value appears above the main path.

��
DEFAULT_KEYWORD

KEYWORD1
KEYWORD2

��

Repeatable items
An arrow returning to the left above the main line indicates an item that
can be repeated.

Preface xiii

�� � repeatable_item1 ��

If you need to specify a separator character (such as a comma) between
repeatable items, the line with the arrow returning to the left shows the
separator character you must specify.

�� �

,

repeatable_item2 ��

Fragments
Where it makes the syntax diagram easier to read, a section or fragment of
the syntax is sometimes shown separately.

��
fragment_name

��

...

fragment_name:

DEFAULT_KEYWORD

KEYWORD1
KEYWORD2

...

Symbol for blank
This symbol (�) in syntax diagrams indicates a blank.

xiv z/OS V2R2 ISPF Services Guide

|
|

z/OS information

This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS Information Roadmap.

To find the complete z/OS® library, go to IBM Knowledge Center
(http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

© Copyright IBM Corp. 1980, 2015 xv

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome

xvi z/OS V2R2 ISPF Services Guide

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R2 ISPF Services Guide
SC19-3626-01

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS Support Portal (http://www-947.ibm.com/

systems/support/z/zos/).

© Copyright IBM Corp. 1980, 2015 xvii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www-947.ibm.com/systems/support/z/zos/
http://www-947.ibm.com/systems/support/z/zos/

xviii z/OS V2R2 ISPF Services Guide

Summary of changes

This information includes terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations for the current edition
are indicated by a vertical line to the left of the change.

Summary of changes for z/OS Version 2 Release 2 (V2R2)
The following changes are made for z/OS Version 2 Release 2 (V2R2).

New information
v The EXTEND parameter is added to the BRIF service to increase the number of

records that can be processed beyond 99,999,999 under “BRIF—Browse interface”
on page 25.

v Updates for PDSE member generations are added under the following topics:
– “BROWSE—browse a data set” on page 30
– “EDIT—edit a data set” on page 66
– “VIEW—view a data set” on page 313

v The PASSTHRU processing option is added to the CONTROL service under
“CONTROL—set processing modes” on page 34.

v The tabname parameter is added to the EDIF and VIIF services under the
following topics:
– “EDIF—Edit interface” on page 58
– “VIIF—View interface” on page 321

v A new example for the LMDINIT service is added under “LMDINIT—initialize a
data set list” on page 125.

Changed information
v The command invocation and call invocation formats for the ISPEXEC command

are updated under “CONTROL—set processing modes” on page 34.

Summary of changes for z/OS Version 2 Release 1 (V2R1)
The following changes are made for z/OS Version 2 Release 1 (V2R1).

JSON API
JSON messages can now be exchanged between TSO/ISPF and a client.
This JSON API enables the user interface for an ISPF application to operate
in the client environment.

For changes to this document relating to this modification, see:
v Appendix A, “JSON API,” on page 341

© Copyright IBM Corp. 1980, 2015 xix

xx z/OS V2R2 ISPF Services Guide

What's in the z/OS V2R2 ISPF library?

You can order the ISPF books using the numbers provided below.

Title Order Number

z/OS V2R2 ISPF Dialog Developer's Guide and Reference
SC19-3619–01

z/OS V2R2 ISPF Dialog Tag Language Guide and Reference
SC19-3620–01

z/OS V2R2 ISPF Edit and Edit Macros
SC19-3621–01

z/OS V2R2 ISPF Messages and Codes
SC19-3622–01

z/OS V2R2 ISPF Planning and Customizing
GC19-3623–01

z/OS V2R2 ISPF Reference Summary
SC19-3624–01

z/OS V2R2 ISPF Software Configuration and Library Manager Guide and Reference
SC19-3625–01

z/OS V2R2 ISPF Services Guide
SC19-3626–01

z/OS V2R2 ISPF User's Guide Vol I
SC19-3627–01

z/OS V2R2 ISPF User's Guide Vol II
SC19-3628–01

© Copyright IBM Corp. 1980, 2015 xxi

xxii z/OS V2R2 ISPF Services Guide

Chapter 1. Introduction to ISPF services

ISPF services help you develop interactive ISPF applications called dialogs. These
services can make your job easier because they perform many tedious and
repetitious operations. In addition, the ISPF services allow you to start a dialog in
batch mode and let it run in the background while you work with another
application in the foreground.

PDF component services communicate with the dialog through dialog variables.
Thus, you can use PDF component services with DM component services. For
information about DM component services and writing dialogs, refer to the z/OS
V2R2 ISPF Dialog Developer's Guide and Reference.

You can also use PDF component services within edit macros, or you can use edit
macros through the EDIT service. For information about writing edit macros, refer
to z/OS V2R2 ISPF Edit and Edit Macros.

Description of the services
The services are described in alphabetical order and each service description
consists of this information:

Description
A description of the function and operation of the service. This description
also refers to other services that can be used with this service.

Format
The syntax used to code the service, showing commands and calls.

Parameters
A description of any required or optional keywords or parameters.

Return Codes
A description of the codes returned by the service. For all services, a return
code of 12 or higher implies a severe error. This error is usually a syntax
error, but can be any severe error detected when using the services.

Examples
Sample usage of the services.

For each service, the command procedure or command invocation format is
shown, followed by the call or call invocation format.

The command formats are provided as CLIST or REXX command procedures,
using ISPEXEC.

Call formats are shown in PL/I syntax, although you are not limited to PL/I calls.
For example, “;” ends statements in the formats described. This is a PL/I
convention, but you should use the syntax appropriate for your programming
language.

Consider using the Edit model facilities when you code requests for ISPF services.
This will save keying the parts of dialog elements that are constant regardless of
the function in which they are used. See z/OS V2R2 ISPF Edit and Edit Macros for a
description of these facilities.

© Copyright IBM Corp. 1980, 2015 1

Using ISPQRY to test whether ISPF is active
A program can determine whether ISPF services are currently available to it
through use of ISPQRY. Your syntax will vary depending on the language you are
using.

For a PL/I program to test the availability of ISPF, the PL/I function would issue:
CALL ISPQRY;

Under TSO/E REXX that uses ADDRESS TSO you can use:
"ISPQRY"

This would use the normal TSO load module search process to find and execute
the ISPQRY service.

There are no parameters associated with the call to ISPQRY. No messages are
written to the terminal. The response from ISPQRY is one of these return codes:

0 The services are available to the caller.

20 The services are not available to the caller.

Invoking the ISPF services
Dialog developers use a command or a call statement to invoke ISPF services from
functions at the point where the service is needed.

Functions coded in a command procedure language invoke ISPF services by means
of the ISPEXEC command. For example:
ISPEXEC DISPLAY PANEL(XYZ)

This example invokes a service to display information on a terminal. A panel
definition named XYZ, prepared by the developer and pre-stored in a panel file,
specifies both the content and the format of the display.

Functions coded in APL2® invoke ISPF services by using ISPEXEC in an APL2
function. For example:
RC � ISPEXEC ’DISPLAY PANEL(XYZ)’

This example invokes the display service to display information on a terminal by
using panel definition XYZ from the ISPF panel file to control the content and
format of the display.

Functions coded in a programming language other than FORTRAN, Pascal, or
APL2 invoke ISPF services by calling either ISPLINK or ISPEXEC. For example, in
PL/I:
CALL ISPLINK (’DISPLAY ’, ’XYZ ’);

or alternatively, set BUFLEN to 18, then:
CALL ISPEXEC (BUFLEN, ’DISPLAY PANEL(XYZ)’);

This example invokes a service to display panel XYZ. FORTRAN and Pascal use
only 6 characters, such as ISPLNK or ISPEX, in a called module's name.

Thus, the FORTRAN or Pascal call is in this format:
lastrc = ISPLNK (’DISPLAY ’, ’XYZ ’)

Introduction to ISPF services

2 z/OS V2R2 ISPF Services Guide

|
|
|

|

|

|

|

|
|

or alternatively:
lastrc = ISPEX (18, ’DISPLAY PANEL(XYZ)’)

ISPLINK and ISPEXEC can be called from programs coded in any language that
uses standard OS register conventions for call interfaces and the standard
convention for signaling the end of a variable-length parameter list. Assembler
programs must include code to implement the standard save area convention.

Load module search order
When you are using STEPLIB to test new maintenance or a new release of ISPF,
and an ISPLLIB is allocated, those data sets allocated to STEPLIB that contain ISPF
load modules should also be allocated to ISPLLIB. This prevents the possibility of
mixed code (production code versus code to be tested). For more information, refer
to the z/OS V2R2 ISPF Dialog Developer's Guide and Reference.

If you are using the ISPF client/server (ISPF C/S) feature or the z/OS UNIX Table
Utility, the Language Environment® run-time library data sets SCEERUN and
SCEERUN2 must be in STEPLIB or LNKLST. The modules in these data sets are
not searched for in ISPLLIB.

Invoking services from command procedures
To invoke ISPF services for a command invocation, use either:
v The ISPEXEC command in a command invocation written in CLIST or REXX
v Option 7.6 of ISPF, the Dialog Services option of the Dialog Test facility.

These services are not available using the ISPEXEC call from a command
procedure:
GRERROR VCOPY VMASK
GRINIT VDEFINE VREPLACE
GRTERM VDELETE VRESET

These services are available by using the CALL from programs.

The ISPEXEC interface
The general format for a command invocation is:

�� ISPEXEC service-name �

,

parameter ��

The command invocation statement must be specified in uppercase.

ISPEXEC parameter conventions
service-name

Alphabetic; up to 8 characters long.

parameter (first)
Positional parameter; required for some services.

parameter (subsequent)
Keyword parameters. They can take either of two forms:
keyword
keyword (value)

Invoking the ISPF services

Chapter 1. Introduction to ISPF services 3

Some keyword parameters are required and others are optional, depending on the
service. Optional parameters are shown below the line. You can code keyword
parameters in any order, but if you code duplicate or conflicting keywords, ISPF
uses the last instance of the keyword.

Using command invocation variables
You can use a CLIST or REXX variable, in the form of a name preceded by an
ampersand (&), as the service name or as a parameter anywhere within a
statement. Each variable is replaced by its current value before execution of the
ISPEXEC command. See z/OS TSO/E CLISTs, z/OS TSO/E REXX User's Guide, and
z/OS TSO/E REXX Reference for further information.

Attention interrupt handling
When a CLIST command procedure is executing under ISPF, the ATTN statement
in the procedure defines how attention interrupts are to be handled. You can find
information about using attention interrupt exits in z/OS TSO/E CLISTs and z/OS
TSO/E Programming Guide.

Passing dialog variables as parameters
Some ISPF services allow the names of dialog variables to be passed as parameters.
The ISPEXEC interface scans these variables for their values in the ISPF function,
shared, and profile variable pools. Variable names are 8 characters or fewer, with
the exception of FORTRAN and Pascal variable names, which are limited to 6 or
fewer characters. These names should not be preceded by an ampersand unless
substitution is desired. For example:
ISPEXEC VGET XYZ
ISPEXEC VGET &VNAME;

In the first example, XYZ is the name of the dialog variable to be passed. In the
second example, variable VNAME contains the name of the dialog variable to be
passed.

Some services accept a list of variable names passed as a single parameter. For
example, the syntax for the VGET service is:

�� ISPEXEC VGET name-list
ASIS
SHARED
PROFILE
SYMDEF

SYMNAMES(symname-list)
��

In this case, “name-list” is a positional parameter. It can consist of a list of up to
254 dialog variable names, each name separated by commas or blanks. If the
name-list consists of more than one name, it must be enclosed in parentheses.
Parentheses can be omitted if a single name constitutes the list. For example:
ISPEXEC VGET (AAA,BBB,CCC)
ISPEXEC VGET (LNAME FNAME I)
ISPEXEC VGET (XYZ)
ISPEXEC VGET XYZ

The last two lines of the example, with and without the parentheses, are
equivalent.

In other cases, a list of variable names can be passed as a keyword parameter. For
example, the syntax for the TBPUT service is:

Invoking the ISPF services

4 z/OS V2R2 ISPF Services Guide

�� ISPEXEC TBPUT table-name
SAVE(name-list) ORDER

��

where the parentheses are required by the “keyword(value)” syntax. Again, the
names can be separated by commas or blanks. Examples:
ISPEXEC TBPUT TBLA SAVE(LNAME FNAME,I)
ISPEXEC TBPUT XTABLE SAVE(XYZ)

Invoking ISPF services with program functions
Programs call ISPF services by invoking an ISPF subroutine interface. The two
basic call interfaces are ISPEXEC and ISPLINK. However, FORTRAN and Pascal
use the alternate name forms ISPEX and ISPLNK, because these languages limit a
module name to 6 characters. A program cannot use an ISPLINK call to invoke
APL2.

Call statements in this document are shown in PL/I syntax. Service names and
keyword values are shown as literals, enclosed in single quotes ('); for example:
CALL ISPLINK (’TBOPEN ’, ’XTABLE ’, ’NOWRITE ’);

or, alternatively:
...set BUFLEN equal to 21...
CALL ISPEXEC (BUFLEN, ’TBOPEN XTABLE NOWRITE’);

Some languages, such as COBOL, do not allow literals within a call statement. Use
of literals is never required for any language. All parameters can be specified as
variables.

The ISPLINK interface
For calls in PL/I, the general call format for invoking ISPF services from functions
by using ISPLINK is:

�� CALL ISPLINK (service-name, �

,

parameter); ��

CALL ISPLINK parameters
These parameters are positional. They must appear in the order described for each
service.

Parameters shown below the line are optional, but ISPF assumes default values for
those parameters you do not choose.

If you want to omit a parameter and use its default value, you must account for it
by inserting a blank enclosed in single quotes (’ ’) in its place. This is how you
would omit parm2 from this example call:
CALL ISPLINK (service-name, parm1, ’ ’, parm3);

If you need only the first few of a list of parameters, you can omit all other
parameters to the right of the last parameter you need, provided that you are
certain that none of the remaining parameters are necessary for your invocation.
For example, if you are using a service that has five parameters, but you need to
use only the first three, code it like this:
CALL ISPLINK (service-name, parm1, parm2, parm3);

Invoking the ISPF services

Chapter 1. Introduction to ISPF services 5

You must show the last parameter in the calling sequence with a ‘1’ as the high
order bit in the last entry of the address list. PL/I, COBOL, Pascal, and FORTRAN
call statements automatically generate this high-order bit. Standard register
conventions are used. Registers 2 to 14 are preserved across the call. However, you
must use the VL keyword in Assembler call statements.

These types of parameters can appear in a calling sequence to ISPLINK or ISPLNK:

service-name or keyword
A left-justified character string that you code exactly as shown in the
service-name description. The description of the particular service shows the
service-name or keyword character string, each of which can be up to 8
characters long. All service names and keywords must be padded with blanks
to their maximum length of 8 characters.

single name
A left-justified character string. If the string is less than the maximum length
for the particular parameter, it must have a trailing blank to delimit the end of
the string. The minimum length for a single name is 1 character. The maximum
length for most names is 8 characters; exceptions include the data set name
and volume serial.

numeric value
A fullword fixed binary number.

numeric name
A dialog variable in which a number is stored. If these variables are defined in
a program module, they can be either fullword fixed binary variables or
character string variables. If the values are returned as characters, they are
right-justified with leading zeros.

name-list (string format)
A list of dialog variable names coded as a character string. Each name is from
1 to 8 characters in length. The string must be enclosed in parentheses. Within
the parentheses, you can separate the names with either commas or blanks. For
example:
’(AAA BBB CCC)’
’(AAA,BBB,CCC)’

When the list consists of a single name, you do not need parentheses. You
must include a trailing blank if parentheses are not used and if the name is
fewer than 8 characters long. A maximum of 254 names can be listed in the
string format.

name-list (structure format)
A list of dialog variable names passed in a structure. Each name is from 1 to 8
characters long. The structure must contain this information in the given order:

1. Count
A fullword fixed binary integer containing the number of names in the
list.

2. Reserved
A fullword fixed binary integer that must contain a value of either 0 or
8.

3. List of names
Each part of the list must be an 8-byte character string. Within each
part, the name of the variable must be left-justified and must have
trailing blanks. The maximum number of names in the list is 254.

Invoking the ISPF services

6 z/OS V2R2 ISPF Services Guide

Note: In general, either form of the name-list (the string format or the
structure format) is acceptable where a name-list is referred to in the syntax.
However, the ISPEXEC command syntax requires the string format for
name-list.

subfield with keyword
A left-justified character string that must be coded exactly as shown. If the
subfield does not contain the maximum number of characters, you must
specify trailing blanks to fill out the field. For example, if you choose the NO
option from STATS(YES│NO), then ‘NO ’ is passed as a parameter.

data-set-list
A list of data set names or a ddname coded as a character string. The string
must be enclosed with parentheses. If a ddname is used, only one must be
specified; for example:
’(MYDD1)’

If a list of data set names is used, a maximum of 15 data set names can be
specified. Data set names must conform to TSO data set naming conventions.
When several data set names are included in the list, they must be separated
by commas or blanks. For example:
’(’USERID1.PANELS1’,PANELS2,PANELS3,’PROJECT1.PANELS’)’

routine address
A fullword address indicating the entry point of a routine.

The ISPEXEC interface
You can use the command function form for service requests in a program function
by using the call format of ISPEXEC. Excluding calls in FORTRAN, Pascal, and
APL2, the general call format for invoking ISPF services from program functions
by using ISPEXEC is:
CALL ISPEXEC (buf-len, buffer);

These services are not available when you use CALL ISPEXEC, but are available
when you use ISPLINK:

GRERROR VDELETE
GRINIT VMASK
GRTERM VREPLACE
VCOPY VRESET
VDEFINE

CALL ISPEXEC parameters
buf-len

Specifies a fullword fixed binary integer containing the length of the buffer.

buffer
Specifies a buffer containing the name of the service and its parameters just as
they would appear in an ISPEXEC invocation for a command invocation
written in CLIST.

The maximum buffer size is 32767 bytes.

All services that are valid through ISPEXEC command invocation statements are
valid through the CALL ISPEXEC interface.

Using parameters as symbolic variables
The ISPEXEC call interface allows you to specify parameters as symbolic variables.
A symbolic variable is one that is preceded by an ampersand (&). Before a scan

Invoking the ISPF services

Chapter 1. Introduction to ISPF services 7

|
|

syntax check of a statement, variable names and the ampersands that precede them
are replaced with the values of the corresponding variables. A single scan takes
place.

Standard register conventions are used. Registers 2 to 14 are preserved across the
call. However, you must use the VL keyword in Assembler call statements.

FORTRAN and Pascal
The general call format for invoking ISPF services from FORTRAN or Pascal
functions is either of these:
lastrc = ISPLNK (service-name, parameter1, parameter2, ...)
lastrc = ISPEX (buf-len, buffer)

The parameters for ISPLNK and ISPEX are the same as those for ISPLINK, as
described in “CALL ISPLINK parameters” on page 5, and for ISPEXEC, as
described in “CALL ISPEXEC parameters” on page 7.

The lastrc variable is both a FORTRAN and a Pascal integer variable that contains
the return code from the specified ISPF service. The lastrc variable is any valid
FORTRAN or Pascal name.

For functions written in FORTRAN, arguments can be passed as either variables or
literals.

ISPF services can be issued from dialog function modules that reside either below
or above the 16-megabyte line. The dialog interface module ISPLINK (and alias
entry points ISPLNK, ISPEXEC, ISPEX, and ISPQRY) has the attributes
RMODE(ANY) and AMODE(ANY). This allows a 31-bit addressing mode caller.
Data areas below the 16-megabyte line are also supported.

Note: The ISPLINK module is shipped with the RMODE(ANY). The load module
is link-edited RMODE(24) and AMODE(ANY) to maintain compatibility with ISPF
dialogs that have the AMODE(24) attribute and that use a LOAD and CALL
interface to ISPLINK. ISPLINK can reside above the 16-megabyte line.

FORTRAN examples:
INTEGER LASTRC*4
CHARACTER SERVIS*8,TABLE*8,OPTION*8
DATA SERVIS/’TBOPEN ’/
DATA TABLE/’XTABLE ’/
DATA OPTION/’NOWRITE ’/

...
LASTRC=ISPLNK(SERVIS,TABLE,OPTION)

INTEGER LASTRC *4
CHARACTER SERVIS *8 ,DATAID *8 ,OPTION *8
DATA SERVIS/’LMOPEN ’/
DATA OPTION/’INPUT ’/...
LASTRC = ISPLNK(SERVIS, DATAID, OPTION)

For FORTRAN service requests, you can use literals in assignment statements to
initialize parameter variables. You must use previously defined constants in
assignment statements. For example:

Invoking the ISPF services

8 z/OS V2R2 ISPF Services Guide

CHARACTER LMOPEN *8 ,SERVIS *8
DATA LMOPEN/’LMOPEN ’/...
SERVIS = LMOPEN

Pascal example:
FUNCTION ISPLNK:INTEGER; EXTERNAL;
CONSTANT SERVIS=’LMOPEN ’;

OPTION=’INPUT ’;

VAR LASTRC:INTEGER;
DATAID:STRING(8);

BEGIN...
LASTRC:=ISPLNK(SERVIS,DATAID,OPTION);

For functions written in Pascal, arguments can also be passed as variables or as
literals.

APL2
A dialog service can be invoked by using the function form of ISPEXEC:
[n] lastrc�ISPEXEC character-vector

lastrc
Specifies the name of an APL2 variable in which the return code from the
service is to be stored.

character-vector
The character-vector is a single-character vector that contains all parameters to
be passed to the dialog service. The format is the same as dialog service
statements for command languages. The first parameter in the vector must be
the name of the service to be invoked.

Standard register conventions are used. Registers 2 to 14 are preserved across the
call.

A workspace containing the ISPEXEC function is provided with ISPF. All dialog
writers must use this ISPEXEC function, as it contains the interface to ISPF and
handles the implementation of commands (through the APL2 EXECUTE function);
otherwise, results are unpredictable. For example:

For information about using APL2 with ISPF, refer to the z/OS V2R2 ISPF Dialog
Developer's Guide and Reference.

Invoking the ISPF services

Chapter 1. Introduction to ISPF services 9

APL2 examples:

This example uses the LMOPEN service and checks the return code that is placed
in variable LASTCC.
LASTCC <- ISPEXEC ’LMOPEN DATAID INPUT’
-> (LASTCC = 0) / NORMALCONT...

PL/I
In PL/I programs, you should include these DECLARE statements:
DECLARE ISPLINK /* NAME OF ENTRY POINT */

ENTRY
EXTERNAL /* EXTERNAL ROUTINE */
OPTIONS(/* NEEDED OPTIONS */
ASM, /* DO NOT USE PL/I DOPE VECTORS */
INTER, /* INTERRUPTS */
RETCODE); /* EXPECT A RETURN CODE */

PL/I examples:
DECLARE SERVICE CHAR(8) INIT(’TBOPEN ’),

TABLE CHAR(8) INIT(’XTABLE ’),
OPTION CHAR(8) INIT(’NOWRITE ’);

...
CALL ISPLINK (SERVICE, TABLE, OPTION);

DECLARE SERVICE CHAR(8) INIT(’LMOPEN ’),
DATAID CHAR(8),
OPTION CHAR(8) INIT(’INPUT ’);

...
CALL ISPLINK (SERVICE, DATAID, OPTION);

For service calls in PL/I, you can use literals in assignment statements to initialize
parameter values, as in:
SERVICE=’LMOPEN ’;

COBOL
For functions written in COBOL, arguments can be passed as variables or as
literals, as in these examples:

COBOL examples:
PROCEDURE DIVISION.

CALL ’ISPLINK’ USING BY CONTENT ’TBOPEN ’ ’XTABLE ’ ’NOWRITE ’.

Invoking the ISPF services

10 z/OS V2R2 ISPF Services Guide

WORKING-STORAGE SECTION.
77 SERVIS PICTURE A(8) VALUE ’LMOPEN ’.
77 DATAID PICTURE A(8).
77 OPTSHUN PICTURE A(8) VALUE ’INPUT ’.

...
PROCEDURE DIVISION.

CALL ’ISPLINK’ USING SERVIS DATAID OPTSHUN.

For service calls in COBOL, you can use literals in assignment statements to
initialize parameter variables, as in:
MOVE ’LMOPEN ’ TO SERVIS.

C
The general call format for invoking ISPF services from C functions is either of
these:

retcode = isplink (service-name, parameter1, parameter2...);

retcode = ISPEXEC (buflen, buffer)

The retcode variable is a C integer variable used to store the return code on the
service you are using. For more information about using C with ISPF, refer to the
z/OS V2R2 ISPF Dialog Developer's Guide and Reference.

C Examples:
#include <stdio.h>
#include <string.h>
#pragma linkage (isplink, OS)
#define SERVICE "’LMOPEN ’"
#define OPTION "’INPUT ’"
main ()
{
extern int isplink();

int retcode;

char8 DATAID;

...

strcpy (DATAID, "DATA ");
retcode = isplink (SERVICE, DATAID, OPTION);
}

Assembler
You can use the CALL Assembler macro to invoke ISPF services from Assembler
routines as follows:

CALL ISPLINK,(SERVICE, parameter-1,parameter-2,...),VL

CALL ISPEXEC,(BUFLEN,BUFFER),VL

When using the CALL macro, you must use the VL keyword.

The return code from a call to ISPLINK or ISPEXEC is returned to the Assembler
routine in register 15.

The example shown in “Assembler example” on page 12 shows an Assembler
routine that invokes the LMINIT and LMFREE services.

Invoking the ISPF services

Chapter 1. Introduction to ISPF services 11

Assembler example:
SAMPLE TITLE ’DO AN LMINIT AND THEN LMFREE’
SAMPLE CSECT

USING SAMPLE,15
B PASTID BRANCH AROUND I.D.
DC C’LMINIT &SYSDATE’

PASTID EQU *
STM 14,12,12(13) SAVE CALLER’S REGS
LR 12,15 ESTABLISH A BASE
DROP 15 GIVE UP REG 15
USING SAMPLE,12 USE REG 12 AS BASE
LA 11,SAVEOS POINT TO ’MY’ SAVE AREA
ST 13,4(0,11) STORE FORWARD POINTER
ST 11,8(0,13) STORE BACKWARD POINTER
LR 13,11 LOCAL SAVE AREA POINTER
SPACE

* DEFINE VARIABLES TO ISPF *

CALL ISPLINK,(VDEFINE,DATAID,DATA,CHAR,LNDATA),VL
SPACE

* INVOKE THE LMINIT SERVICE *

CALL ISPLINK,(LMINIT,DATAID,B,B,B,B,B,B,DSN),VL
SPACE
LR 4,15 PUT RETCODE IN REG 4
SPACE

* INVOKE THE LMFREE SERVICE *

CALL ISPLINK,(LMFREE,DATA),VL
SPACE
LR 4,15 PUT RETCODE IN REG 4
SPACE

* CLEAN UP VDEFINES *

CALL ISPLINK,(VDELETE,DATAID),VL
L 13,SAVEOS+4 GET CALLER’S SAVE AREA
LM 14,12,12(13) RESTORE CALLERS REGS
SR 15,15 GO BACK WITH RETURN CODE 0
BR 14 LEAVE THIS MODULE
CNOP 0,8
LTORG

LNDATA DC F’8’ LENGTH OF DATA
VDEFINE DC CL8’VDEFINE ’ VDEFINE SERVICE
VDELETE DC CL8’VDELETE ’ VDELETE SERVICE
LMINIT DC CL8’LMINIT ’ LMINIT SERVICE
LMFREE DC CL8’LMFREE ’ LMFREE SERVICE
DATAID DC CL8’DATA ’ VARIABLE
CHAR DC CL4’CHAR’ VARIABLE
DSN DC C’PDFUSER.SAMPLE.PDS’’ ’ DATA SET NAME
DATA DC CL8’ ’ DATAID SAVE AREA
SAVEOS DS 18F STANDARD SAVE AREA
B DC CL1’ ’ SINGLE BLANK

LTORG
END SAMPLE

Invoking the ISPF services

12 z/OS V2R2 ISPF Services Guide

Return codes from services
Each service returns a numeric code, called a return code, indicating the results of
the operation. These return codes are summarized in Table 1.

Table 1. Service Return Codes

Operation Results Return Code Reason

Normal completion 0
Indicates that the service completed operation
without errors.

Exception condition 4, 8

Indicates a condition that is not necessarily an
error, but that the dialog should be aware of. A
return code of 4 is informational, while an 8
generally indicates a non-terminating error
condition, such as the end of a data set or member
list.

Error condition 10, 12, 14, 16, 20

Indicates that the service did not complete
operation because of errors. Use the CONTROL
service to control errors with a return code of 12 or
greater. Return codes of 10 and 14 are particular to
PDF component services.

Return codes and their meanings vary for each service and are listed with each
service description in this topic.

Command invocation return code variable
For a command invocation, the return code is returned in the CLIST variable
LASTCC.

Call invocation return code variables
For call invocation, the return code is returned in register 15 or, in FORTRAN and
Pascal programs, in registers 15 and 0. In APL2, the return code is placed on the
execution stack by the ISPEXEC function.

FORTRAN and Pascal

FORTRAN and Pascal programs can examine the return code by using an integer
variable, such as lastrc in this example:
lastrc = ISPLNK (service name, parameter1, parameter2, ...)

PL/I

PL/I programs can examine the return code by using the PLIRETV built-in
function. These declaration statements are required:
DECLARE ISPLINK EXTERNAL ENTRY OPTIONS(ASM INTER RETCODE);
DECLARE PLIRETV BUILTIN;

or alternatively:
DECLARE ISPEXEC EXTERNAL ENTRY OPTIONS(ASM INTER RETCODE);
DECLARE PLIRETV BUILTIN;

COBOL

COBOL programs can examine the return code by using the built-in
RETURN-CODE variable.

Return codes from services

Chapter 1. Introduction to ISPF services 13

Return code of 12 or higher
The dialog can use the ISPF dialog management CONTROL service to set the error
mode to RETURN, or CANCEL, which is the default. See the CONTROL service in
Chapter 2, “Description of the ISPF services,” on page 23 for detailed information.

The error mode setting determines what happens when a return code is 12 or
higher. There are two error modes:

CANCEL
Displays and logs a message, then stops the dialog and displays the
previous Primary Option Menu.

RETURN
Formats an error message, but does not display or log it. Returns to the
function that invoked the service, passing back the designated return code.

In CANCEL mode, control is not usually returned to the function that invoked the
service. Consequently, the function does not see a return code of 12 or higher, so
you do not have to include logic to process errors of this severity.

However, ISPLINK returns a code of 20 to the dialog when an invalid ISPF
environment causes the error. In this situation, ISPF cannot display a panel to
show the error. Control is returned to the dialog, even though the return code is 12
or higher.

In RETURN mode, control returns to the function that invoked the service. That
function must have logic to handle return codes of 12 or higher.

The RETURN mode applies only to the function that invoked the CONTROL
service. If a lower-level function is invoked, it starts out in CANCEL mode. When
a function returns to the higher-level function that invoked it, the mode that the
higher-level function was operating in resumes.

System variables used to format error messages
If an error occurs, an error message is formatted before control returns to the
function. This list defines the contents of the system variables that are used to
format error messages:

Variables
Contents

ZERRMSG
Message ID.

ZERRSM
Short-message text in which variables have been resolved.

ZERRLM
Long-message text in which variables have been resolved.

ZERRHM
The name of a Help panel, if one was specified in the message definition.

ZERRALRM
The value YES if an alarm was specified in the message definition
(.ALARM=YES); otherwise, the value NO.

ZERRMSG, ZERRSM, and ZERRLM are changed only when the return code from a
DM component service is greater than 8.

Return codes from services

14 z/OS V2R2 ISPF Services Guide

These system variables are in the function pool, if it exists. Otherwise, they are in
the shared variable pool.

The function can display the message, log the message, or both, simply by
invoking the appropriate service with the message ID ISRZ002. For example:
ISPEXEC SETMSG MSG(ISRZ002)
ISPEXEC LOG MSG(ISRZ002)

The service provides the short- and long-message text, the name of the
corresponding help panel, and the alarm setting for your use.

Return codes from I/O and command routines
EDIF and BRIF invoke routines supplied on the service invocation to perform I/O
and primary command processing. Specific return codes are expected of these
routines and are grouped into four categories:

0 Normal completion.

4 ISPF should process the request.

8 End of file.

12, 16, and 20
Error conditions; the specified functions did not complete because of
errors.

Return codes for these functions are described in greater detail in the EDIF and
BRIF sections in Chapter 2, “Description of the ISPF services,” on page 23.

A summary of the ISPF services
See:
v “Display services”
v “File tailoring services” on page 16
v “Library access services” on page 16
v “PDF component services” on page 18
v “Table services” on page 18
v “Variable services” on page 19
v “Miscellaneous services” on page 20

Display services
ADDPOP

Specifies that the panel displays listed are to be in a pop-up window. It
also identifies the location of the pop-up window on the screen in relation
to the underlying panel or window.

DISPLAY
Reads a panel definition from the panel files, initializes variable
information in the panel from the corresponding dialog variables in the
function, shared, or profile variable pools, and displays the panel on the
screen. Optionally, the DISPLAY service might superimpose a message on
the display.

REMPOP
Removes a pop-up window from the screen.

SELECT
Used to display a hierarchy of selection panels or invoke a function.

Return codes from services

Chapter 1. Introduction to ISPF services 15

SETMSG
Constructs a specified message from the message file in an ISPF system
save area. The message will be superimposed on the next panel displayed
by any DM component service.

TBDISPL
Combines information from panel definitions with information stored in
ISPF tables. It displays selected rows from a table, and allows the user to
identify rows for processing.

File tailoring services
The file tailoring services, listed in the order in which they are normally invoked,
are:

FTOPEN
Prepares the file tailoring process and specifies whether the temporary file
is to be used for output.

FTINCL
Specifies the skeleton to be used and starts the tailoring process.

FTCLOSE
Ends the file tailoring process.

FTERASE
Erases an output file created by file tailoring.

Library access services
DSINFO

Returns information about a particular data set in dialog variables in the
function pool.

LMCLOSE
Closes a data set.

LMCOMP
Compresses a partitioned data using either the new compress request exit
or IEBCOPY if the exit is not installed.

LMCOPY
Copies partitioned data set members or sequential data sets, allowing pack
and automatic truncation options.

LMDDISP
Displays the data set list for a specified dslist ID.

LMDFREE
Removes the link between a dslist ID and a DSNAME LEVEL and
VOLUME combination.

LMDINIT
Associates a DSNAME LEVEL and VOLUME combination with a dslist ID.
Thereafter, this dslist ID is used to identify the DSNAME LEVEL and
VOLUME combination for processing by other library access services.

LMDLIST
Creates a data set list for a specified dslist ID.

LMERASE
Deletes an ISPF library or MVS data set.

Summary of ISPF services

16 z/OS V2R2 ISPF Services Guide

LMFREE
Releases the data set associated with a given data-id.

LMGET
Reads one record of a data set.

LMINIT
Associates one or more ISPF libraries or an existing data set with a data-id.
Thereafter, this data-id is used to identify the data set for processing by
other library access services.

LMMADD
Adds a member to an ISPF library or a partitioned data set.

LMMDEL
Deletes a member of an ISPF library or a partitioned data set.

LMMDISP
Provides member selection lists for:
v Single partitioned data sets
v Concatenations of up to four partitioned data sets.

LMMFIND
Finds a member of an ISPF library or a partitioned data set.

LMMLIST
Creates a member list of an ISPF library or a partitioned data set.

LMMOVE
Moves partitioned data set members or sequential data sets, allowing pack
and automatic truncation options.

LMMREN
Renames a member of an ISPF library or a partitioned data set.

LMMREP
Replaces a member of an ISPF library or a partitioned data set.

LMMSTATS
Sets and stores, or deletes ISPF statistics for partitioned data set members
that have fixed-length or variable-length records.

LMOPEN
Opens a data set.

LMPRINT
Prints to the list data set, with formatting optional.

LMPUT
Writes one record of a data set.

LMQUERY
Provides requested information regarding the data set associated with a
given data-id.

LMRENAME
Renames an ISPF library.

MEMLIST
Enables access to the Library Utility member list from within a dialog.

Summary of ISPF services

Chapter 1. Introduction to ISPF services 17

PDF component services
PDF component services consist of BRIF (Browse Interface), BROWSE, EDIF (Edit
Interface), EDIREC (edit recovery for EDIF), EDIT, VIEW, VIIF, and EDREC (edit
recovery for EDIT and VIEW), along with the library access services listed in
“Library access services” on page 16.

BRIF Provides browse functions for data accessed through dialog-supplied I/O
routines. It allows you to browse data other than partitioned data sets or
sequential files, such as subsystem data and in-storage data, and to
preprocess the data being browsed.

BROWSE
Can be used to look at any ISPF library, concatenation of ISPF libraries, or
data set that can be allocated by using the LMINIT service, and certain
other data types not supported by ISPF. You can browse host data sets on
the workstation or workstation files on the host.

EDIF Provides edit functions for data accessed through dialog-supplied I/O
routines. It allows you to edit data other than partitioned data sets or
sequential files, such as subsystem data and in-storage data, and to
preprocess the data being browsed.

EDIREC
Initializes an edit recovery table (ISREIRT) for use by the EDIF service and
determines whether recovery from the EDIF service is pending.

EDIT Can be used to look at any ISPF library, concatenation of ISPF libraries, or
data set that can be allocated by using the LMINIT service. The EDIT
service provides an interface to the PDF editor and bypasses the display of
the Edit Entry Panel on the host. You can also edit host files on the
workstation or workstation files on the host.

EDREC
Initializes an edit or view recovery table, determines whether recovery is
pending, and takes the action specified by the first argument.

VIEW Functions exactly like the EDIT service, with these exceptions:
1. You must use the REPLACE or CREATE primary command to save

data.
2. When you enter the END primary command after altering a file in

VIEW mode, you will be prompted to either save the changes or exit
without saving them.

VIIF Provides edit functions for data accessed through dialog-supplied I/O
routines. It enables you to view data other than partitioned data sets or
sequential files, such as subsystem data and in-storage data, and to
preprocess the data being viewed.

Table services
Services that Affect an Entire Table

TBCLOSE
Closes a table and saves a permanent copy if the table was opened.

TBCREATE
Creates a new table and opens it for processing.

TBEND
Closes a table without saving it.

Summary of ISPF services

18 z/OS V2R2 ISPF Services Guide

TBERASE
Deletes a permanent table from the table output file.

TBOPEN
Opens an existing permanent table for processing.

TBQUERY
Obtains information about a table.

TBSAVE
Saves a permanent copy of a table without closing it.

TBSORT
Sorts a table.

TBSTATS
Provides access to statistics for a table.

Services that Affect Table Rows

TBADD
Adds a new row to the table.

TBBOTTOM
Sets CRP to the last row and retrieves the row.

TBDELETE
Deletes a row from the table.

TBEXIST
Tests for the existence of a row (by key).

TBGET
Retrieves a row from the table.

TBMOD
Updates an existing row in the table. Otherwise, adds a new row to the
table.

TBPUT
Updates a row in the table if it exists and if the keys match.

TBSARG
Establishes a search argument for use with TBSCAN. Can also be used in
conjunction with TBDISPL.

TBSCAN
Searches a table for a row that matches a list of argument variables, and
retrieves the row.

TBSKIP
Moves the CRP forward or backward by a specified number of rows, and
then retrieves the row at which the CRP is positioned.

TBTOP
Sets CRP to TOP, ahead of the first row.

TBVCLEAR
Sets to null dialog variables that correspond to variables in the table.

Variable services
All Functions

Summary of ISPF services

Chapter 1. Introduction to ISPF services 19

VERASE
Removes variables from the shared pool or profile pool.

VGET Retrieves variables from the shared pool or profile pool or retrieves the
value of a system symbolic variable.

VPUT Updates variables in the shared pool or profile pool.

Program Functions Only

VCOPY
Copies data from a dialog variable to the program.

VDEFINE
Defines function program variables to ISPF.

VDELETE
Removes the definition of function variables.

VMASK
Associates a mask with a dialog variable.

VREPLACE
Updates dialog variables with program data specified in the service
request.

VRESET
Resets function variables.

Miscellaneous services
CONTROL

Allows a function to condition ISPF to expect certain kinds of display
output, or to control the disposition of errors encountered by dialog
management services.

FILESTAT
Provides statistics about a site on the connected workstation.

FILEXFER
Uploads files from the workstation or downloads files to the workstation.

GETMSG
Obtains a message and related information and stores them in variables
specified in the service request.

GRERROR
Provides access to the address of the GDDM error record and the address
of the GDDM call format descriptor module.

GRINIT
Initializes the ISPF/ GDDM interface and optionally requests that ISPF
define a panel's graphic area as a GDDM graphics field.

GRTERM
Terminates a previously established GDDM interface.

LIBDEF
Provides applications with a method of dynamically defining application
data element files while in an active ISPF session.

LIST Allows a dialog to write data lines directly (without using print commands
or utilities) to the ISPF list data set.

Summary of ISPF services

20 z/OS V2R2 ISPF Services Guide

LOG Allows a function to write a message to the ISPF log file. The user can
specify whether the log is to be printed, kept, or deleted when ISPF is
terminated.

PQUERY
Returns information for a specific area on a specific panel. The type, size,
and position characteristics associated with the area are returned in
variables.

QBASELIB
Enables an ISPF dialog to obtain the current library information for a
specified DDNAME.

QLIBDEF
Allows an ISPF dialog to obtain the current LIBDEF definition information,
which can be saved by the dialog and used later to restore any LIBDEF
definitions that may have been overlaid.

QTABOPEN
Allows an ISPF dialog to obtain a list of currently open ISPF tables. The
TBSTATS or TBQUERY service can then be used to obtain more detailed
information about each table.

QUERYENQ
Allows an ISPF dialog to obtain a list of all system enqueues, or all system
enqueues that match the specified criteria.

TRANS
Translates data from one Coded Character Set Identifier (CCSID) to
another.

WSCON
Enables the user to connect to the workstation without using the GUI
parameter on the ISPSTART command and the Initiate Workstation
Connection panel from the ISPF settings.

WSDISCON
Enables the user to disconnect from the workstation without having to
terminate the ISPF session.

Summary of ISPF services

Chapter 1. Introduction to ISPF services 21

Summary of ISPF services

22 z/OS V2R2 ISPF Services Guide

Chapter 2. Description of the ISPF services

The services are listed in alphabetical order.

Each service description consists of:

Description
A description of the function and operation of the service. This description
also refers to other services that can be used with this service.

Format
The syntax used to code the service, showing both command invocation
and call invocation.

Parameters
A description of any required or optional keywords or parameters.

Return Codes
A description of the codes returned by the service. For all services, a return
code of 12 or higher implies a severe error. This error is usually a syntax
error, but can be any severe error detected when using the services.

Examples
Sample usage of the services.

ADDPOP—start pop-up window mode
The ADDPOP service notifies the dialog manager that all subsequent panel
displays are to appear in a pop-up window. No visible results appear on the screen
until you issue a DISPLAY, TBDISPL, or SELECT PANEL call.

All subsequent panel displays will be in the pop-up window created with the
ADDPOP call, until a REMPOP or another ADDPOP is called. Another ADDPOP
call creates a separate pop-up window.

Each pop-up window created as a result of a successful ADDPOP service call can
also have a window title. The title is embedded in the top of the window frame
border and can be only one line length. If the title is longer than the window
frame, the dialog manager truncates it. To define the window title, set system
variable ZWINTTL to the desired window title text.

Command invocation format

�� ISPEXEC ADDPOP
POPLOC(field-name) ROW(row) COLUMN(column)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

© Copyright IBM Corp. 1980, 2015 23

�� CALL ISPLINK ('ADDPOP��' , field-name
'�'

, row
'�'

, column);
'�'

��

Parameters
The field-name, row, and column parameters are optional.

Note: When running in GUI mode, the field-name, row, and column parameters
are ignored.

If you omit the field-name parameter when using the ADDPOP service, the Dialog
Manager offset positions the pop-up window so that the title of the underlying
panel is visible, and horizontally four character spaces to the right of the
underlying panel.

If the pop-up window will not fit relative to the ADDPOP positioning parameters,
the Dialog Manager overrides these parameters and adjusts the window so that it
fits on the screen.

field-name
Specifies that the dialog manager is to position the pop-up window relative to
the specified field in the currently displayed panel. If omitted, the pop-up
window is offset positioned relative to the active window.

row
Specifies that the dialog manager is to adjust the field-specific location row or
offset location row by the specified amount. This amount can be either positive
or negative. The default value is 0.

column
Specifies that the dialog manager is to adjust the field-specific location column
or offset location column by the specified amount. This amount can be positive
or negative. The default value is 0.

buf-len
Specifies a fullword fixed binary integer containing the length of buffer.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

12 An ADDPOP service call was issued before a panel was displayed or
another ADDPOP service call was issued before a panel was displayed for
the previous ADDPOP call.

20 Severe error.

Example
This EXEC called from the ISPF Primary Option panel:
/* REXX */
ADDRESS ISPEXEC
"ADDPOP"
"DISPLAY PANEL(PANELA)"

ADDPOP

24 z/OS V2R2 ISPF Services Guide

"ADDPOP POPLOC(FIELD2)"
ZWINTTL = "POPUP WINDOW TITLE"
"DISPLAY PANEL(PANELB)"
"ADDPOP COLUMN(5) ROW(3)"
ZWINTTL = ""
"DISPLAY PANEL(PANELC)"
EXIT

results in this panel:

BRIF—Browse interface
The Browse Interface (BRIF) service provides browse functions for data accessed
through dialog-supplied I/O routines. The invoking dialog must perform all
environment-dependent functions such as file allocation, opening, reading, closing,
and freeing. The dialog is also responsible for any Enqueue/Dequeue serialization
that is required. With the dialog providing the I/O routines, BRIF allows you to:
v Browse data other than partitioned data sets or sequential files, such as

subsystem data and in-storage data.
v Do preprocessing of the data being browsed.

The invoking dialog provides addresses of routines that will:
v Respond to a read request for a specific record by its relative position in the

data.
v Perform processing for the BROWSE primary command. If this routine is not

provided, ISPF will process any request for the BROWSE primary command.

All addresses must be 31-bit addresses, and the routines must have an addressing
mode (AMODE) of 31.

The dialog-supplied read, write, and command processing routines are called
directly by ISPF at the same task level (TCB) that displays the ISPF screens. If you
need to ensure that your program runs at the same task level as the routines, use

Menu Utilities Compilers Options Status Help
- -------------------------------------

--------- Panel A ------------ ption Menu

0 Field 1 ___________ ters User ID . : USERID
1 Field 2 ___________ istings Time. . . : 14:27
2 Field 3 . . . POPUP WINDOW TITLE . : 3278
3 Field 4 . . . --------- Panel B ------------ . : 1
4 . : ENGLISH
5 This is Panel B . : ISR
6 OC
7 COMMAND ===> ___ Fiel --------- Panel C ------------ D
8 F1=HELP F2=S Fiel
9 F4=RETURN F5=R Fiel This is Panel C 6,B
1 Fiel 4.1

Field E ___________
Enter X to Terminate COMMAN Field F ___________

F1=HE Field G ___________
F4=RE Field H ___________

COMMAND ===> _________________
Option ===> TSO ADDP F1=HELP F2=SPLIT F3=END
F1=Help F2=Split F3 F4=RETURN F5=RFIND F6=RCHANGE
F10=Actions F12=Cancel

Figure 2. Multiple Pop-up Windows

ADDPOP

Chapter 2. Description of the ISPF services 25

the SELECT PGM() service to start your program. This may be a factor if your
program expects to create or share data spaces or other task-specific resources
between the main program and the read, write, or command routines.

Command invocation format
Command procedures cannot be used to invoke this service.

Call invocation format

�� CALL ISPLINK ('BRIF����' , data-name
'�'

,rec-format ,rec-len �

� ,read-routine , cmd-routine
'�'

, dialog-data
'�'

ISRBROBA
, panel-name

'�'
�

� , format-name
'�'

'NO�����'
, '�'

'YES����'
, EXTEND��);

'�'
��

Parameters
data-name

This parameter allows you to specify a data name for the source data to be
browsed. This name will be displayed in the Title line of the default Browse
panel; if data-name is not specified, no name is displayed on the panel. This
parameter must not have any embedded blanks, and its maximum length is 54
characters. This name is stored in ZDSNT in the function pool.

rec-format
The record format of the data to be browsed:
v F - fixed
v FA - fixed (ASA printer control characters)
v FM - fixed (machine code printer control characters)
v V - variable
v VA - variable (ASA printer control characters)
v VM - variable (machine code printer control characters)
v U - undefined.

rec-len
The record length, in bytes, of the data to be browsed. For variable and
undefined record formats, this is the maximum record length. This parameter
must be a positive numeric value with a maximum value of 32,760 bytes.

The dialog can hide data during a Browse session by specifying the record
length to be less than the actual data being browsed. By doing this, BRIF
displays only the data up to the specified record length.

read-routine
A fullword address indicating the entry point of a dialog-supplied read
routine. It is recommended that the high-order bit of this value be set ON. See
“Read routine” on page 28 for more information about this parameter.

If a read-routine displays its own panel, then a CONTROL DISPLAY SAVE should be
done at the beginning of the panel and a CONTROL DISPLAY RESTORE should be
done at the end.

BRIF

26 z/OS V2R2 ISPF Services Guide

||||

|

cmd-routine
A fullword address indicating the entry point of a dialog-supplied routine that
processes the BROWSE primary command or any dialog-specific primary
commands. It is recommended that the high-order bit of this value be set ON.
See “Command routine” on page 29 for more information about this
parameter. If this parameter is not specified, ISPF initiates a recursive Browse
session to handle any request for the BROWSE primary command.

If a cmd-routine displays its own panel, then a CONTROL DISPLAY SAVE should be
done at the beginning of the panel and a CONTROL DISPLAY RESTORE should be
done at the end.

dialog-data
A fullword address indicating the beginning of a dialog data area. This address
is passed to the dialog-supplied routines. If no address is supplied, zeros are
passed to the dialog routines. This data area provides a communication area
for the dialog.

panel-name
The name of the panel to use for displaying the data. The default is the
standard Browse data display panel (ISRBROBA). Refer to z/OS V2R2 ISPF
Planning and Customizing for information about developing a customized panel.

format-name
The name of the format to be used to reformat the data. The default is no
format. This parameter is provided to support the IBM® 5550 terminal using
the Double-Byte Character Set (DBCS).

YES|NO
Specifies whether the data is treated as mixed-mode DBCS data. If YES is
specified, the BRIF service treats the data as mixed-mode DBCS data. If NO is
specified, the data is treated as EBCDIC (single-byte) data. This parameter is
provided to support the IBM 5550 terminal using the Double-Byte Character
Set (DBCS).

EXTEND
Indicates that the read routine has been changed to accept record numbers that
exceed 99999999.

Dialog-supplied routines
The dialog-supplied routines are invoked by using standard linkage. Addresses
must be 31-bit addresses, and the addressing mode (AMODE) of the routines must
be AMODE=31.

A BRIF read routine must have an assembler interface to be used in a call to BRIF.

The dialog-supplied read and command processing routines are called directly by
ISPF at the same task level (TCB) that displays the ISPF screens. If you need to
ensure that your program runs at the same task level as the routines, use the
SELECT PGM() service to start your program. This may be a factor if your
program expects to create or share data spaces or other task-specific resources
between the main program and the read, write, or command routines.

Note:

1. The dialog-supplied routines and the read and command exits can be written in
languages that use the Language Environment runtime environment, provided
the runtime environment has the Language Environment TRAP(ON) option set.
However, a mixture of Language Environment-conforming main dialog code

BRIF

Chapter 2. Description of the ISPF services 27

|

|
|
|

and service routine code is not supported. Dialogs and service routines must
either all be Language Environment-conforming or all be Language
Environment-nonconforming.

2. Language Environment applications that use the ISPF BRIF or EDIF service
must use the Language Environment OS_UPSTACK option. For ISPF to invoke
the user routines with a valid LE dynamic save area, the Language
Environment application must issue a CONTROL LE ON service request before
each BRIF or EDIF service request and a CONTROL LE OFF service request after
each BRIF or EDIF service request.

Read routine
The read routine is invoked with these parameters:
v Fullword pointer to record data read (output from read routine)
v Fullword fixed binary data length of the record read if the rec-format parameter

is V, VA, VM, or U (output from read routine)
v Fullword relative record number:

– Record-requested input to read routine
– Record-provided output from read routine when return code is 4 or 8.

v Fullword dialog data area address.

BRIF calls the read routine as the data records are required to be displayed. Data
not being displayed is not retained.

After the first screen of data is displayed, the first SCROLL DOWN MAX
command results in a request to the dialog read routine for relative record number
99999999. When the EXTEND parameter is used relative record 2147483646 is
requested. The read routine is responsible for determining the relative record
number of the last record in the data. It must return that last record number, and a
pointer to the data with a return code of 4; the end of file is temporary, or 8, if the
end of file is permanent. When BRIF receives this response, it uses the last record
number to determine the relative record number of the first data record that
should appear on the display (last record number minus the number of data lines
on the display + 1). BRIF then calls the read routine requesting this first data
display record, and subsequently requests all following records up to the last
record in the data to fill the display.

The read routine should maintain the previous record number requested so that on
the next read request a determination can be made whether the requested record is
the next record in the data. This could save a considerable amount of processing
time in the read routine, since data records are frequently requested in sequential
order for partitions of data.

If an I/O error occurs while attempting to read to the end of data, the read routine
returns the relative record number of the record causing the I/O error with a
return code of 8. When BRIF requests this record number again to format the
screen, the read routine then issues a return code of 16, indicating a read error.

The BRIF service requests and displays all additional records beyond the
temporary end of data (return code 4) if you attempt to scroll down past the end
of data or cause any interrupt (such as Enter) when the end-of-data line is present
on the display.

If you decrease the number of records during the BRIF session, the read routine
can set a new last record number that is smaller than the current value with return
code 4.

BRIF

28 z/OS V2R2 ISPF Services Guide

|
|
|
|
|
|
|
|
|
|
|
|

When the BRIF service receives a return code 8, it sets the last record number as
the permanent end of file. The BRIF service does not request any additional
records beyond the permanent end of file.

Command routine
The dialog-supplied command routine, when specified, is called to process the
BROWSE primary command or any dialog-specific primary commands. The
Command Routine is invoked with two parameters:
v A Fullword fixed binary function code indicating the type of command.

10 Recursive Browse

20 A command not recognized by browse. The command can be a
dialog-specific command or an invalid command. The command routine
is responsible for getting the command from the variable ZCMD and
any necessary parsing of the command. If the command routine was not
specified or if the command routine returns a return code of 4, BRIF
issues an INVALID COMMAND message.

v A Fullword dialog data area address.

Return codes
When a dialog routine terminates with a return code (12 or higher or an
unexpected return code), the dialog can issue a SETMSG to generate a message on
the next panel display. If the dialog does not set a message, the BRIF service will
issue a default message.

Read Routine Return Codes
0 Normal completion.

4 Temporary end of file.

8 Record requested beyond end of data. The relative record number of the
last data record and a pointer to the last data record are returned.

16 Read error. Browse data obtained up to the read error is formatted and
displayed with an indication that a read error was encountered.

20 Severe error. (The BRIF service terminates immediately with a return code
of 20.)

Command routine
0 Normal completion.

4 ISPF should process the requested function.

12 Command deferred; retain the command on the Command line. Browse
data is redisplayed.

20 Severe error. (The BRIF service terminates immediately with a return code
of 20.)

Errors that the BRIF service cannot handle must be handled by the dialog; for
example, environment-dependent errors would be processed by the dialog.

BRIF service
0 Normal completion.

12 No data to browse.

16 Unexpected return code received from a dialog-supplied routine; unable to

BRIF

Chapter 2. Description of the ISPF services 29

continue. When an unexpected return code is received, the BRIF service
terminates immediately with a return code of 16.

20 Severe error; unable to continue.

After the Browse session has been terminated, control is returned to the dialog
with a return code indicating the completion status of the service.

Example
This example invokes the BRIF service to browse data called SPOOL.DATA, which
has a variable record format with a maximum record length of 132 characters. The
READRTN read routine reads the data records. The CMDRTN command routine
processes the BROWSE primary command and any dialog-specific primary
commands.

Call invocation
CALL ISPLINK(’BRIF ’,’SPOOL.DATA ’,’V ’,132,READRTN,CMDRTN,’ ’,

’ ’,’ ’,’NO ’);

For a more complete example of using BRIF, including dialog-supplied I/O
routines and source code, see the z/OS V2R2 ISPF Dialog Developer's Guide and
Reference.

BROWSE—browse a data set
The BROWSE service provides an interface to the Browse function and bypasses
the display of the View Entry Panel. For a complete description of the Browse
function see the z/OS V2R2 ISPF User's Guide Vol II.

The BROWSE service allows you to use a customized panel for displaying data.
Panel ISRBROB should be used as a model for your customized panel. You can
also use the BROWSE service recursively, either through nested dialogs or by
entering a BROWSE command while browsing.

BROWSE can be used to look at any ISPF library, concatenation of ISPF libraries,
or data set that can be allocated by using the LMINIT service. However, it cannot
be used by a PL/I main program that also uses subtasking. The BRIF service
allows you to browse data types not supported by ISPF.

Command invocation format

�� ISPEXEC BROWSE DATASET(dsname)
VOLUME(serial)

�

�
PASSWORD(pswd-value) PANEL(panel-name) FORMAT(format-name)

�

�
NO

MIXED()
YES

��

or

BRIF

30 z/OS V2R2 ISPF Services Guide

|

|

�� ISPEXEC BROWSE DATAID(data-id) �

�
MEMBER(member-name)

GEN(generation)
PANEL(panel-name)

�

�
FORMAT(format-name) NO

MIXED()
YES

��

or

�� ISPEXEC BROWSE FILE(file-var)
PANEL(panel-name)

�

�
FORMAT(format-name) NO

MIXED()
YES

RECLEN(rec-len)
��

Call invocation format

�� CALL ISPLINK ('BROWSE��' ,
dsname

, serial
'�'

, pswd-value
'�'

�

� , panel-name
'�'

,
data-id

, member-name
'�'

, format-name
'�'

�

�
'NO������'

, '�'
'YES�����'

,
file-var

, rec-len ,);
'�' generation

��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
dsname

The data set name, in TSO syntax, of the data set to be browsed. This is
equivalent to the “other” data set name on the View Entry Panel. You can
specify a fully qualified data set name enclosed in apostrophes. If the
apostrophes are omitted, the TSO data set prefix from the user's TSO profile is
automatically attached to the data set name. The maximum length of this
parameter is 56 characters.

For ISPF libraries and MVS partitioned data sets, you can specify a member
name or pattern enclosed in parentheses. If a member name is not included, or
a pattern is specified as part of the dsname specification when the DATASET
keyword is used, a member selection list for the ISPF library, concatenation of
libraries, or MVS partitioned data set is displayed. See the topic on naming

BROWSE

Chapter 2. Description of the ISPF services 31

|||||||||
|

|
|||||||||||||

|

|

ISPF libraries and data sets in the z/OS V2R2 ISPF User's Guide Vol I for a
complete description of patterns and pattern matching.

Note: You can also specify a VSAM data set name. If a VSAM data set is
specified, ISPF checks the ISPF configuration table to see if VSAM support is
enabled. If it is, the specified tool is invoked. If VSAM support is not enabled,
an error message is displayed.

serial
The serial number of the volume on which the data set resides. If you omit this
parameter or code it as blank, the system catalog is searched for the data set
name. The maximum length of this parameter is 6 characters.

pswd-value
The password if the data set has MVS password protection. Do not specify a
password for data sets that are protected by Resource Access Control Facility
(RACF®).

panel-name
The name of a customized browse panel that you create, to be used when
displaying the data. See z/OS V2R2 ISPF Planning and Customizing for
information about developing a customized panel.

format-name
The name of the format to be used to reformat the data. The format-name
parameter is provided to support the IBM 5550 terminal using the Double-Byte
Character Set (DBCS).

YES|NO
For the MIXED parameter, if YES is specified, the BROWSE service treats the
data as mixed-mode DBCS data. If NO is specified, the data is treated as
EBCDIC (single-byte) data. This parameter is provided to support the IBM
5550 terminal using the Double-Byte Character Set (DBCS).

file-var
The name of an ISPF variable containing the path name for a z/OS UNIX
regular file or directory. If the path name is for a directory, a directory selection
list is displayed.

rec-len
A numeric value specifying the record length to be used when browsing a
z/OS UNIX file. This parameter causes newline characters in the data to be
ignored as record delimiters.

data-id
The data ID that was returned from the LMINIT service. The maximum length
of this parameter is 8 characters.

You can use the LMINIT service in either of two ways before invoking the
BROWSE service:
v You can use LMINIT to allocate existing data sets by specifying a data set

name or ISPF library qualifiers. LMINIT returns a data ID as output. This
data ID, rather than a data set name, is then passed as input to the BROWSE
service.

v The dialog can allocate its own data set by using the TSO ALLOCATE
command or MVS dynamic allocation, and then pass the ddname to
LMINIT. Again, a data ID is returned as output from LMINIT and
subsequently passed to the BROWSE service. This procedure is called the

BROWSE

32 z/OS V2R2 ISPF Services Guide

ddname interface to BROWSE. It is particularly useful for browsing VIO data
sets, which cannot be accessed by data set name because they are not
cataloged.

Note: Using the data ID of a multivolume data set causes Browse to look at
all volumes of that data set. If you want to look at just one volume of a
multivolume data set, use the data set name and volume number.

member-name
A member of an ISPF library or MVS partitioned data set, or a pattern. If you
do not specify a member name when the MEMBER keyword or call invocation
is used, or if a pattern is specified, a member selection list for the ISPF library,
concatenation of libraries, or MVS partitioned data set is displayed.

generation
A fullword fixed integer containing the relative or absolute generation of the
member to be browsed. If the value is negative, it is a relative generation. If
the value is positive, it is an absolute generation that the caller has determined
to be valid. The value 0 (zero) indicates the current generation and is
equivalent to not specifying the parameter. This parameter is valid only when
the specified member is in a PDSE version 2 data set that is configured for
member generations.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return codes
These return codes are possible:

0 Normal completion.

12 Zero-length data; empty sequential data set or z/OS UNIX file, or
zero-length member of a partitioned data set.

14 Member or generation (if specified) not found.

16 Either:
v No members matched the specified pattern.
v No members in the partitioned data set.

18 A VSAM data set was specified but the ISPF Configuration Table does not
allow VSAM processing.

20 Severe error; unable to continue.

Example
The first examples invoke the BROWSE service to give you a member list of all
members beginning with ‘TEL’. A member name can be selected from this member
list. The second example invokes the BROWSE service for z/OS UNIX file
/u/user1/filea.

Command invocation
ISPEXEC BROWSE DATASET(’ISPFPROJ.FTOUTPUT(TEL*)’)

OR

BROWSE

Chapter 2. Description of the ISPF services 33

|
|
|
|
|
|
|
|

||

ISPEXEC LMINIT DATAID(DDBROW) +
DATASET(’ISPFPROJ.FTOUTPUT’)

OR

ISPEXEC BROWSE DATAID(&DDBROW) MEMBER(TEL*)

FILEVAR = ’/u/user1/filea’
ISPEXEC BROWSE FILE(FILEVAR)

Call invocation
CALL ISPLINK (’BROWSE ’,’ISPFPROJ.FTOUTPUT(TEL*) ’);

or

Set the program variable BUFFER to contain:
BUFFER = ’BROWSE DATASET(’ISPFPROJ.FTOUTPUT(TELOUT)’)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Enter the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

CONTROL—set processing modes
The CONTROL service defines certain processing options for the dialog
environment. It allows a function to condition ISPF to expect certain kinds of
display output, or to control the disposition of errors encountered by other DM
component services. The processing options control the display screen and error
processing.

Command invocation format

BROWSE

34 z/OS V2R2 ISPF Services Guide

|
|

�� ISPEXEC CONTROL DISPLAY LOCK
LINE

START(line-number)
SM

START(line-number)
REFRESH

SAVE
RESTORE

ALLVALID
ENTER

NONDISPL
END NOSETMSG

CANCEL
ERRORS

RETURN
SPLIT ENABLE

DISABLE
NOCMD
SUBTASK PROTECT

CLEAR
TSOGUI QUERY

OFF
ON

REFLIST UPDATE
NOUPDATE

LE ON
OFF

PASSTHRU LRSCROLL PASQUERY
PASOFF
PASON

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

OR

�� CALL ISPLINK ('CONTROL�' , �

CONTROL

Chapter 2. Description of the ISPF services 35

|||

|

� 'DISPLAY�' , 'LOCK����'
, 'LINE����'

, line-number
, 'SM������'

, line-number
, 'REFRESH�'
, 'SAVE����'
, 'RESTORE�'
, 'ALLVALID'
, 'ENTER���'

'NONDISPL' , '�'
, 'END�����' , '�' , 'NOSETMSG'
, 'CANCEL��'

'ERRORS��'
, 'RETURN��'

'SPLIT���' , 'ENABLE��'
, 'DISABLE�'

'NOCMD���'
'SUBTASK�' , 'PROTECT�'

, 'CLEAR���'
'TSOGUI��' , 'QUERY���'

, 'OFF�����'
, 'ON������'

'REFLIST�' , 'UPDATE��'
, 'NOUPDATE'

'LE������' , 'ON������'
, 'OFF�����'

'PASSTHRU' , 'LRSCROLL' , '�' , 'PASQUERY'
'PASOFF��'
'PASON���'

); ��

ADDPOP/REMPOP service in relation to CONTROL service
The ADDPOP service performs the equivalent of a CONTROL DISPLAY SAVE
prior to creating the pop-up window and the REMPOP service performs the
equivalent of a CONTROL DISPLAY RESTORE after removing the current pop-up
window. A dialog should not issue its own CONTROL DISPLAY SAVE/RESTORE
around an ADDPOP/REMPOP sequence.

Parameters
DISPLAY

Specifies that a display mode is to be set. The valid modes are LOCK, LINE,
REFRESH, SAVE, RESTORE, SM, and ALLVALID. LINE mode is in effect until
the next display of an ISPF panel. REFRESH occurs on the next display of an
ISPF panel.

LOCK
Specifies that the next (and only the next) display output (such as output from
the DISPLAY or TBDISPL service) is to leave the terminal user's keyboard
locked. ISPF processes the next display output as though the user had pressed
the Enter key. It is the dialog developer's responsibility to ensure that the
keyboard is unlocked by the subsequent display of a message or panel.

While the keyboard is locked, the screen is not protected from being overlaid
by line-mode messages. To ensure that the screen is fully rewritten you must
follow the CONTROL DISPLAY LOCK request with a CONTROL DISPLAY
LINE request.

CONTROL

36 z/OS V2R2 ISPF Services Guide

CONTROL DISPLAY LOCK can be used to display an “in process” message
during a long-running operation.

LINE
Specifies that terminal line-mode output is expected, for example from a TSO
command or program dialog. The screen is completely rewritten on the next
ISPF full-screen write operation, after the lines have been written.

Note: CONTROL DISPLAY LINE is automatically invoked by the SELECT
service whenever a SELECT CMD request is encountered, unless the command
begins with a percent (%) sign. For example:
SELECT CMD(ABC) – causes automatic entry into line mode
SELECT CMD(%ABC)– no automatic entry into line mode.

The MODE parameter of the SELECT service can be used to override this use
of the percent sign.

line-number
This parameter specifies the line number on the screen where the line-mode
output is to begin. (The first line on the screen is line number 1.) The screen is
erased from this line to the bottom. If this parameter is omitted or coded as
zero, the value defaults to the end of the body of the currently displayed
panel.

The line-number parameter must have an integer value. For a call, it must be a
fullword fixed binary integer. The parameter should specify a line value that is
not within three lines of the bottom of the logical screen. If the value is within
three lines of the bottom of the logical screen, a default line value is used. This
value is equivalent to the number of the bottom line of the screen, minus 3.

This parameter is meaningful only when entering line mode. It can be specified
with the SM keyword, since SM reverts to LINE if the Session Manager is not
installed. Once line mode has been set, subsequent attempts to set line mode
(without intervening full-screen output) are ignored. Accordingly, the
line-number, once set, cannot be changed.

For DBCS terminals, CONTROL DISPLAY LINE always clears the screen and
places the cursor on line 1, regardless of the line-number value.

SM Specifies that the TSO Session Manager is to take control of the screen when
the next line-mode output is issued. If the Session Manager is not installed, the
SM keyword is treated as LINE.

Note: If you specify the SM keyword when graphics interface mode is active
(for example, following a GRINIT service request but before a GRTERM service
request has been issued), Session Manager does not get control of the screen.
In this case, the SM keyword is treated as LINE.

REFRESH
Specifies that the entire screen image is to be rewritten when the next
ISPF-generated full-screen write is issued to the terminal. This facility should
be used before or after invoking any program that uses non-ISPF services for
generating full-screen output. Be aware that REFRESH does not always result
in a return to full-screen mode. To ensure a return to full-screen mode in ISPF,
the dialog should issue CONTROL DISPLAY LINE.

SAVE
Used in conjunction with DISPLAY, TBDISPL, BROWSE, EDIT, or VIEW
processing to indicate that information about the current logical screen,
including control information, is to be saved.

CONTROL

Chapter 2. Description of the ISPF services 37

Use of the CONTROL service SAVE and RESTORE parameters allows
DISPLAY, TBDISPL, BROWSE, EDIT, or VIEW processing to be nested. The
CONTROL service should be used to save and restore the environment at each
level. SAVE and RESTORE must be issued in pairs. Issue SAVE following the
screen display; issue RESTORE before the next request for the saved panel.

A command entered by the user in the command field of a displayed panel
causes the dialog manager to issue a SELECT service request for the dialog to
process the command. The current display environment is automatically saved
before invoking the designated dialog. That environment is subsequently
restored when the dialog ends.

The current DISPLAY environment that existed before the SAVE is not
available to a nested processing level.

Table display service system variables, ZTD*, are not saved as part of the
SAVE/RESTORE information. The values of these variables may be saved by
the dialog developer before invoking another table display and restored before
resuming processing of the initial table display. Also, the ZVERB variable is not
saved.

RESTORE
Specifies the restoration of information previously saved by CONTROL
DISPLAY SAVE. The logical screen image is restored exactly as it appeared
when the SAVE was performed. Processing of the previous panel or table
display can then be resumed.

ALLVALID
Specifies that ISPF is to consider all displayed code points from X'40' to X'FE'
as valid. This specification applies to all subsequent DISPLAY and TBDISPL
service requests within the current SELECT level only and remains in effect
until the SELECT level ends. It is not propagated to lower SELECT levels.

It is the responsibility of the dialog to ensure that the code points are
displayable without a hardware error before issuing this option.

NONDISPL
Specifies that no display output is to be issued to the terminal when processing
the next panel definition. This option is in effect only for the next panel; after
that, normal display mode is resumed. Initializing the ZCMD variable to a
value may cause a panel to display after 'CONTROL NONDISPL' has been
issued. This can be circumvented by using the COMMAND option of the
DISPLAY service which will cause the panel specified on the DISPLAY service
to be processed in CONTROL NONDISPL ENTER mode.

Note: NONDISPL mode stays active until the next panel definition is
processed; that is, until the PROC section of a panel display has been
completed. Error conditions, such as an error in the panels INIT section, or an
action coded in an INIT section, such as .RESP=ENTER, causes panel
processing to bypass the panels PROC section, leaving CONTROL NONDISPL
active until the PROC section of the next panel is processed.

ENTER
Specifies that the Enter key is to be simulated as the user response to the
NONDISPL processing for the next panel.

END
Specifies that the END command is to be simulated as the user response to the
NONDISPL processing for the next panel.

CONTROL

38 z/OS V2R2 ISPF Services Guide

NOSETMSG
Specifies that the SETMSG Service message is to be suppressed when the panel
on which it was intended to be displayed is suppressed by the CONTROL
NONDISPL ENTER Service, but an error when processing the panel causes the
panel to be displayed. The NOSETMSG parameter is, in effect, only for the
next panel. the NOSETMSG parameter is ignored on the CONTROL
NONDISPL END Service.

ERRORS
Specifies that an error mode is to be set. The valid modes are CANCEL and
RETURN. If the RETURN mode is set, it applies only to the function that set it
using this, the CONTROL, service. The error mode that has been set is not
propagated to any new function invoked by the SELECT service.

CANCEL
Specifies that the dialog is to be terminated on an error resulting from a return
code of 12 or higher from any service. A message is written to the ISPF log file,
and a panel is displayed to describe the particular error situation. In batch
mode, messages are written to the SYSTSPRT data set.

RETURN
Specifies that control is to be returned to the dialog on an error. System
variables ZERRxxxx, as described in “Return codes from services” on page 13,
contain the information for the message that describes the error. The message
is not written to the ISPF log file unless TRACE mode is in effect, and no error
panel is displayed. If you want the dialog to abend with STAE you must
specify CONTROL ERRORS RETURN, because specification of CONTROL
ERRORS CANCEL nullifies the requested STAE.

SPLIT
Specifies the user's ability to enter split-screen mode, as defined by the
ENABLE or DISABLE keyword.

ENABLE
Specifies that the user is to be allowed to enter split-screen mode. Split-screen
mode is normally enabled. It is disabled only if explicitly requested by use of
the CONTROL service. It remains disabled until explicitly re-enabled by the
CONTROL service. Because SPLIT commands are not supported when ISPF is
running in the batch environment, issuing CONTROL SPLIT ENABLE results
in a severe error (return code 20).

DISABLE
Specifies that the user's ability to enter split-screen mode is to be disabled,
until explicitly enabled by the CONTROL service. If the user is already in split
screen mode, a return code of 8 is issued and split-screen mode remains
enabled.

NOCMD
Specifies that for the next displayed panel only, any command entered on the
command line or through use of a function key is not to be honored. NOCMD
is in effect for any redisplay of the panel.

SUBTASK
This option pertains to multi-task program dialogs that are invoked as TSO
commands by the CMD interface of the SELECT service.

PROTECT
Specifies that ISPF is to establish an ESTAE routine to trap and ignore the
abend that occurs when ISPF tries to POST a subtask that no longer exists.

CONTROL

Chapter 2. Description of the ISPF services 39

If an abend does occur on a POST when the ESTAE protection is in effect, ISPF
will return to a wait state until another service request occurs or the
application terminates.

The new ESTAE will be in effect only around the POST, but once it is
requested, it will be established each time ISPF is to POST the application,
until the application cancels the protection request or the current SELECT level
is terminated.

The scope of the ESTAE protection on the POST is strictly within the current
SELECT level. It will not be automatically propagated to another SELECT level
but must be requested again if it is to be used.

Any tables or other files that are opened by ISPF on behalf of the detached
subtask (for example, by LIBDEF, table services, or file tailoring) will remain
open until the application is terminated or the appropriate DM component
service is used to close them. Thus, if such a subtask is to be restarted after
being detached, it must have the logic to handle the situation when a table, or
other file, it tries to open is already opened on entry to that routine.

Although both the parent task and subtask of a dialog can make DM
component service calls, ISPF does not support asynchronous service requests.
In other words, DM component service calls cannot be made while a service is
in process for another caller.

Because the ESTAE protection is provided only on the POST of the DM
component service caller, this rule must be followed by the application:
v A subtask that can be detached while a DM component service that it

invoked is in process cannot use any storage acquired under its TCB in the
parameter list of a service call. That is, all parameters used in service calls
must reside in storage that will not be released when the DETACH for the
subtask is issued. Furthermore, any other resource which can be used by
ISPF on behalf of the subtask must not be released while a DM component
service is in process.

The parent task should acquire all the storage to be used by the subtask and
pass it as a parameter on the ATTACH. Thus, all local variables to be used by
the subtask would be declared in a DSECT and be based on the storage
acquired by the parent task. This will prevent the possibility of an abend
caused by an attempt by ISPF to access storage that was released and will still
allow the subtask to use all DM component services.

CLEAR
Specifies that ESTAE protection on the POST of a subtask is to be terminated.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

TSOGUI

QUERY
Gives the current status of the ISPF/TSO window:

Return code = 0
Either the user is not running ISPF GUI with TSO line mode
support or TSOGUI is OFF. All TSO input and output is directed to
the 3270 session.

CONTROL

40 z/OS V2R2 ISPF Services Guide

Return code = 1
All TSO line mode output is displayed in the ISPF/TSO window
and line mode input must be entered into the ISPF/TSO window's
input field.

OFF
Specifies that the ISPF/TSO window is suspended and all full screen and
line mode data appear in the 3270 window until CONTROL TSOGUI ON
is issued.

ON Specifies that the ISPF/TSO window is to be resumed and all TSO line
mode output and input is directed to the ISPF/TSO window.

Note:

1. CONTROL TSOGUI is ignored if you are not running ISPF GUI with TSO
line mode support.

2. CONTROL TSOGUI defaults to ON during ISPF GUI session initialization.

REFLIST

UPDATE
Enable ISPF allocations to add entries to the data set and library reference
lists.

NOUPDATE
Do not allow ISPF allocations to add entries to the data set and library
reference lists.

Note:

1. The CONTROL REFLIST command is used to enable or disable automatic
updates to the reference lists. It is intended to be used around calls to ISPF
services that normally cause entries in the reference lists. These services
include EDIT, BROWSE, VIEW, and LMINIT.

2. When NOUPDATE is specified, the reference list is not updated, even if the
user settings request updates. This is so programs can ensure that they do
not fill up the reference list with names that the user would never want to
see, such as temporary or intermediate files.

3. The program invoking the CONTROL REFLIST NOUPDATE command to
turn off reference list updates must specify CONTROL REFLIST UPDATE
before it exits. It is recommended that you issue a CONTROL REFLIST
NOUPDATE immediately before the service that would normally update
the reference list (such as LMINIT, EDIT, or BROWSE) and issue a
CONTROL REFLIST UPDATE immediately after the service returns.

4. There is only one CONTROL REFLIST setting for each logical screen (or
split screen), and using this command can affect updates in the logical
screen after the invoking program ends.

LE ISPF initialisation for Language Environment support.

ON CONTROL LE ON is required before each BRIF or EDIF call where the
application has provided Language Environment-enabled command, read,
or write routines.

OFF
CONTROL LE OFF is required after each such call.

PASSTHRU

LRSCROLL

CONTROL

Chapter 2. Description of the ISPF services 41

|

|
|

PASQUERY
Gives the current status of processing for the LEFT and RIGHT scroll
commands:

Return code = 0
The LEFT and RIGHT scroll commands are not being passed to
the dialog program.

Return code = 1
The LEFT and RIGHT scroll commands are being passed to the
dialog program for processing.

PASOFF
Specifies that the LEFT and RIGHT scroll commands are not to be
passed to the dialog program.

PASON
Specifies that the LEFT and RIGHT scroll commands are to be passed
to the dialog program for processing.

Return codes
These return codes are possible:

0 Normal completion.

8 Split-screen mode already in effect. Applies only to a SPLIT DISABLE
request. Split-screen mode remains enabled.

20 Severe error.

Examples
Here are some examples of the CONTROL service:

Example 1:
Set the error processing mode to allow the dialog function to process return codes
of 12 or higher.
ISPEXEC CONTROL ERRORS RETURN

or

Set the program variable BUFFER to contain:
CONTROL ERRORS RETURN

Set program variable BUFLEN to the length of the variable BUFFER. Enter the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’CONTROL ’,’ERRORS ’,’RETURN ’);

Example 2:
Return control to the dialog if there is an error in browse. After the browse service
completes, terminate the dialog if any subsequent services receive return code 12
or higher.
ISPEXEC "CONTROL ERRORS RETURN"
ISPEXEC "BROWSE DATASET("dsn")"
ISPEXEC "CONTROL ERRORS CANCEL"

CONTROL

42 z/OS V2R2 ISPF Services Guide

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

Example 3:
Lock the screen while displaying a status message.
ISPEXEC "CONTROL DISPLAY LOCK"
ISPEXEC "DISPLAY MSG(ISPC069C)"

Example 4:
Process a panel definition without displaying the panel on the screen.
ISPEXEC "CONTROL NONDISPL"
ISPEXEC "DISPLAY PANEL("global.panelname")"

DIRLIST—directory list service
The DIRLIST service allows you to write your own z/OS UNIX directory list
dialog. This service is similar to ISPF option 3.17, the z/OS UNIX Directory List
Utility, which displays the list of files in a z/OS UNIX directory. The DIRLIST
service allows the caller to control the format of the data displayed in the list and
to process line commands entered against entries in the list.

Command invocation format

�� ISPEXEC DIRLIST PATH(path-var)
CONFIRM(YES)

NO

�

�
CONFDRD(YES)

NO
PANEL(panel-name) COLS(column-list)

�

�
FIXCOLS(YES)

NO
LCMDS(line-command-list) FROM(file-name)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('DIRLIST�' , path-var , '�'
'YES�����'
'NO������'

�

� , '�'
'YES�����'
'NO������'

, panel-name
'�'

, column-list
'�'

, '�'
'YES�����'
'NO������'

�

� , line-command-list ;
'�'

, file-name ;
'�'

��

CONTROL

Chapter 2. Description of the ISPF services 43

Parameters
path-var

The name of an ISPF variable containing the pathname for a z/OS UNIX
directory. The pathname can contain glob characters to perform searching of
the z/OS UNIX file system.

CONFIRM(YES|NO)
Specifies whether the Confirm Delete panel appears when using the D (delete)
line command from the displayed directory list to delete a file or empty
directory. YES is the default.

If YES is specified, ISPF displays the Confirm Delete panel. This gives you the
opportunity to change your mind and keep the file.

If NO is specified, ISPF does not display the Confirm Delete panel. The file is
deleted without your having to take any additional actions.

CONFDRD(YES|NO)
Specifies whether the Confirm Non-empty Directory Delete panel appears
when using the D (delete) line command from the displayed directory list to
delete a directory containing files.

YES is the default. If YES is specified, ISPF displays the Confirm Non-empty
Directory Delete panel. This gives you the opportunity to change your mind
and keep the directory.

If NO is specified, ISPF does not display the Confirm Non-empty Directory
Delete panel. The directory and all the contained files and sub-directories are
deleted without your having to take any additional actions.

panel-name
The name of the panel to use for the display of the directory list. The default is
the panel (ISRUUDL0) used for the directory list displayed using ISPF option
3.17, the z/OS UNIX Directory List Utility.

column-list
Specifies the columns of data displayed on the z/OS UNIX directory list. If the
parameter is omitted, the directory list is displayed using the column
arrangement defined by the user using the Directory List Column
Arrangement choice from the z/OS UNIX Directory List Utility Options
pull-down menu.

To request that the ISPF-defined default column arrangement is used for the
directory list display, specify an asterisk: COLS(*).

Table 2 shows the ISPF-defined column arrangement:

Table 2. ISPF-defined column arrangement

Column Width

Type 4

Permissions 10

Audit 6

Extended Attributes (Ext) 4

Format (Fmat) 4

Owner 8

Group 8

Links 6

DIRLIST

44 z/OS V2R2 ISPF Services Guide

Table 2. ISPF-defined column arrangement (continued)

Column Width

Size 10

Modified Date/Time 19

Changed Date/Time 19

Accessed Date/Time 19

Created Date/Time 19

Alternatively, you can specify a paired list of columns and widths values. You
specify the column values using the abbreviations shown in Table 3. The table
also shows the maximum widths that can be specified for each column.

Table 3. Column abbreviations and widths.

Column Abbreviation Maximum width

Type TY 4

Permissions PE1 10

Permissions - Octal PO1 4

Audit AU 6

Extended Attributes (Ext) EX 4

Format (Fmat) FM 4

Owner OW 8

Group GR 8

Links LI 14

Size SZ 20

Modified Date/Time MD 19

Changed Date/Time CH 19

Accessed Date/Time AC 19

Created Date/Time CR 19

Note:

1. PE (Permissions) and PO (Permissions - Octal) are mutually
exclusive.

If a column is not specified with the COLS parameter, then that column is not
displayed with the directory list. For example, the COLS parameter shown
here causes the display of a z/OS UNIX directory list (see Figure 3 on page 46)
showing only a Type column, Owner column, and a Changed Date/Time
column 10 characters in width:
COLS(TY,4,OW,8,CH,10)

DIRLIST

Chapter 2. Description of the ISPF services 45

FIXCOLS(YES|NO)
Specifies whether you can change the column arrangement for the directory
list display using the Directory List Column Arrangement choice from the
z/OS UNIX Directory List Utility Options pull-down menu. This parameter is
ignored if the column-list parameter is not specified on the call to DIRLIST.

If you specify YES, you cannot change the column arrangement specified by
the column-list parameter.

If you specify NO, you can change the column arrangement specified by the
column-list parameter using the Directory List Column Arrangement choice
from the z/OS UNIX Directory List Utility Options pull-down menu.

line-command-list
This parameter allows the calling application to process line commands
entered on the z/OS UNIX directory list display. The caller can specify a
directory list command processor and a list of line commands to be processed
by the line command processor, rather than the ISPF directory list utility.

The first entry in the line-command-list is the name of the line command
processor. This can be the name of a REXX exec or a program. The line
command processor is invoked using the SELECT CMD service when one of
the line commands specified in the line-command-list is entered on the
directory list display. The line commands are specified after the name of the
line command processor. Line commands can be from 1 to 8 characters in
length. These line commands can include line commands normally processed
by ISPF, allowing the application to override the processing of a line command.

The example of the LCMDS parameter shown here causes line commands DP,
LCMD1, and W to be processed by line command processor LCMDPROC. Also
the B line command, normally processed by the ISPF directory list utility to
invoke the ISPF browse function, is instead handled by LCMDPROC.
LCMDS(LCMDPROC,DP,B,LCMD1,W)

The variables in the shared pool shown in Table 4 are used to pass data
between ISPF and the line command processor:

Table 4. Variables used to pass data between ISPF and the line command processor

Variable name Description Length

ZUDLCMD Line command 8

z/OS UNIX Directory List Row 1 to 11 of 11
Command ===> Scroll ===> CSR

Pathname . : /SYSTEM

Command Filename Message Type Owner Changed

. Dir IBMUSER 2007/01/31

.. Dir IBMUSER 2007/05/02
bin Syml IBMUSER 2007/01/31
dev Dir IBMUSER 2007/05/13
etc Dir IBMUSER 2007/06/12
lib Syml IBMUSER 2007/01/31
opt Syml IBMUSER 2007/01/31
samples Syml IBMUSER 2007/01/31
tmp Dir IBMUSER 2007/07/16
usr Syml IBMUSER 2007/01/31
var Dir IBMUSER 2007/06/12

******************************* Bottom of data ********************************

Figure 3. z/OS UNIX Directory List

DIRLIST

46 z/OS V2R2 ISPF Services Guide

Table 4. Variables used to pass data between ISPF and the line command
processor (continued)

Variable name Description Length

ZUDPATH Pathname of file the line command was entered
against

1023

ZUDFTYPE File type 4

ZUDFPERM File permissions 10

ZUDFPRMO File permissions - octal 4

ZUDFOWN Owner 8

ZUDFAUDT Audit settings 6

ZUDFEXTA Extended attributes 4

ZUDFFORM File format 4

ZUDFGRP Owner group 8

ZUDFLNKS Links 14

ZUDFSIZE File size 20

ZUDFMDTM Modified date/time 19

ZUDFCDTM Changed date/time 19

ZUDFADTM Accessed date/time 19

ZUDCRDTM Created date/time 19

ZUDMESSG Allows the line command processor to set the
message displayed against the file after the line
command is processed

16

Line command processor parameters
Any parameters entered with a line command are passed to the line
command processor.

For a REXX line command processor, each parameter specified with the
line command is passed as an argument string to the REXX program.
For example, if the line command
LL a1 B22 c333

is entered and processed by this REXX line command processor
/* REXX */
Arg p1 p2 p3

the REXX variable would have these values:
p1 = ’A1’ p2 = ’B22’ p3 = ’C333’

For a line command processor that is a program, on entry register 1
contains the address of a Command Processor Parameter List (CPPL).
The format of the CPPL is described in the TSO/E ProgrammingGuide.
The CPPL contains the address of the command buffer. The text area of
the command buffer contains the name of the line command processor
followed by any parameters specified with the line command. For
example, if the line command
LL a1 B22 c333

is entered, the text area of the command buffer for the line command
processor LCMDPGM would contain:

DIRLIST

Chapter 2. Description of the ISPF services 47

LCMDPGM a1 B22 c333

Line command processor return codes

0 Line command completed successfully.

1 Requests that processing of this line command be handled by
the ISPF directory list utility or, if not a recognized directory
list line command, passed to TSO.

>=8 The line command failed. ISPF issues message ISRU812.

file-name
The display starting point within the directory list. When this parameter is
used, the directory list is positioned to start at the first file matching or after
the specified filename.

Return codes
These return codes are possible:

0 Normal completion.

8 Error building the directory list. The error condition is described in the
ISPF system dialog variables.

12 A keyword value is incorrect.

20 A severe error occurred while processing the directory list.

Example
This example shows an invocation of DIRLIST which displays the directory list for
/SYSTEM/etc. The list shows columns for Permissions, File Type, and Modified
Date. The line command processor LCPROC is invoked for line commands LL, B,
and UPD.

Command invocation
dir = ’/SYSTEM/etc’
ISPEXEC DIRLIST PATH(dir) COLS(PE,10,TY,4,MO,10) LCMDS(LCPROC,LL,B,UPD)

Call invocation
dir = ’/SYSTEM/etc’;
CALL ISPLINK(’DIRLIST ’,

’DIR ’,’ ’,’ ’,’ ’,
’(PE,10,TY,4,MO,10)’,’ ’,
’(LCPROC,LL,B,UPD)’);

DISPLAY—display panels and messages
The DISPLAY service retrieves a panel definition, performs any pre-display
processing specified on the panel definition, initializes variable panel fields from
the corresponding dialog variables, and displays the panel on the screen. A
message can optionally be displayed with the panel. If the optional message is to
be displayed in a message pop-up window, the position of the message pop-up
window can be indicated by the MSGLOC parameter.

Note: When running in GUI mode, the MSGLOC parameter is ignored.

After the panel has been displayed, you can enter information and press the Enter
key. All input fields are automatically stored into dialog variables of the same
name, and the)PROC section of the panel definition is then processed. If any
condition occurs that causes a message to be displayed (verification failure,

DIRLIST

48 z/OS V2R2 ISPF Services Guide

MSG=value condition in a TRANS, or explicit setting of .MSG), processing
continues to the)HELP or)END section. The)REINIT section is then processed if
it is present. The panel is then redisplayed with the first, or only, message that was
encountered.

When the user presses the Enter key again, all input fields are stored and the
)PROC section is again processed. This sequence continues until the entire)PROC
section has been processed without any message conditions being encountered.
The panel display service finally returns, with a return code of 0, to the dialog
function that invoked it.

Alternatively, when a panel is displayed, the user can enter a CANCEL, END,
EXIT, or RETURN command. If the input fields are not in a scrollable area, they
are stored and the)PROC section is processed. In scrollable areas, only the input
fields that have been displayed will be stored. No messages are displayed, even if
a MSG condition is encountered. The panel display service then returns to the
dialog function with a return code of 8.

Command invocation format

�� ISPEXEC DISPLAY
PANEL(panel-name) MSG(message-id)

�

�
CURSOR(cursor-field-name) CSRPOS(cursor-position)

�

�
COMMAND(stack-buffer-name) RETBUFFR(ret-buffer-name)

�

�
RETLGTH(ret-length-name) MSGLOC(message-field-name)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('DISPLAY�' , panel-name
'�'

, message-id
'�'

�

� , cursor-field-name
'�'

, cursor-position
'�'

, stack-buffer-name
'�'

�

� , ret-buffer-name
'�'

, ret-length-name
'�'

, message-field-name
'�'

��

Parameters
panel-name

Specifies the name of the panel to be displayed.

message-id
Specifies the identification of a message to be displayed on the panel.

DISPLAY

Chapter 2. Description of the ISPF services 49

cursor-field-name
Specifies the name of the field where the cursor is to be placed.

If cursor-position is specified both by this parameter and by setting the control
variable .CURSOR in the)INIT or)REINIT section of the panel being
displayed, the value in .CURSOR overrides this parameter.

cursor-position
Specifies the character position within the field where the cursor is to be
placed. This position applies regardless of whether the initial cursor placement
was specified in the CURSOR calling sequence parameter, the .CURSOR
control variable in the)INIT or)REINIT section of a panel, or is the result of
default cursor placement. If cursor-position is not specified or is not within the
field, the default is 1.

If cursor-position is specified both by this parameter and by setting the control
variable .CSRPOS in the)INIT or)REINIT section of the panel being displayed,
the value in .CSRPOS overrides this parameter.

stack-buffer-name
Specifies the name of a variable containing the chain of commands passed by
the dialog to ISPF for execution. The maximum length of the actual command
chain within this variable is 255.

ret-buffer-name
Specifies the name of a variable in which the unprocessed portion of the
command chain is stored should an error occur before the complete chain is
processed. This includes the command being processed when the error is
detected.

ret-length-name
Specifies the name of a variable in which the length of the unprocessed portion
of the command chain is stored should an error occur before the complete
chain is processed. This includes the command being processed when the error
was detected.

message-field-name
Used to position the message pop-up window. If the application specifies this
parameter, the dialog manager positions the message pop-up relative to the
named field.

If this parameter is omitted and a message is displayed in a message pop-up
window, the window is displayed at the bottom of the logical screen or below
the active ADDPOP pop-up window if one exists.

For compatibility with later versions, this parameter should be specified only
when the message will display in a pop-up window.

Note: When running in GUI mode, this parameter is ignored.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

All of the parameters are optional. The panel-name and message-id parameters are
processed as follows:

DISPLAY

50 z/OS V2R2 ISPF Services Guide

v If panel-name is not specified, an error occurs unless a previous panel was
displayed at the same nesting level.

v If panel-name is specified and message-id is not specified, the panel is retrieved,
the)INIT section, if it exists, is processed, and the panel is displayed without a
message.

v If panel-name and message-id are both specified, the panel is retrieved, the
)INIT section, if it exists, is processed, and the panel is displayed with the
specified message, which is typically a prompt or confirmation message.

v If panel-name is not specified and message-id is specified, the)REINIT section, if
it exists, is processed and the current panel is overlaid with a message, which is
typically an error message.

v If neither panel-name nor message-ID is specified, the)REINIT section, if it
exists, is processed and the current panel is redisplayed without a message. Use
the CONTROL service to save and restore the environment when a display
series, in which the panel-name is not specified, is to be interrupted by another
DISPLAY, TBDISPL, BROWSE, or EDIT operation.

v When a panel is displayed before invoking EDIT/VIEW, invoking the DISPLAY
service without a panel name from within the EDIT/VIEW service can produce
unpredictable results. The DISPLAY environment might be altered by the
EDIT/VIEW service. Do not expect the DISPLAY environment that existed
before invoking the EDIT/VIEW service to remain unchanged.

In the first two situations, processing of the panel definition proceeds normally,
through the)INIT section, before display of the panel. If .MSG, .CURSOR, or
.CSRPOS is set in the)INIT section, that setting overrides an initial message or
cursor placement passed by the calling sequence parameters.

In the third and fourth situations, processing of the)INIT section is bypassed, and
there is no automatic initialization of variables in the panel body, nor in the
attribute section. However, the)REINIT section is processed. The)REINIT section
provides for specified variables or attributes to be reset before a redisplay.
Typically, the)REINIT section contains:
v Field attribute overrides, specified with the .ATTR control variable.
v Changes to displayed panel fields, specified in assignment statements and the

REFRESH statement.

Each time the DISPLAY service is invoked, the)PROC section of the panel is
processed after the terminal user enters a response to the display. Therefore, it is
recommended that all reinitialization logic be placed in the)REINIT section, rather
than at the end of the)PROC section.

Using the COMMAND Option
The COMMAND option allows a dialog to pass a chain of commands in the
variable specified by stack-buffer-name to ISPF for execution. The panel specified on
the DISPLAY service request is processed in CONTROL NONDISPL ENTER mode.
In addition, when ENTER is simulated by ISPF, the command chain is executed as
though it were either entered on the command line of the panel by the user or
entered through a function key. When the command chain is exhausted or one of
the commands cannot be found in the active set of command tables, processing
terminates and control returns directly to the dialog that issued the DISPLAY
COMMAND call, except for those specific error conditions described further on.

If the DISPLAY COMMAND service returns an error, the function pool variable
specified by ret-buffer-name contains the unexecuted portion of the command chain,

DISPLAY

Chapter 2. Description of the ISPF services 51

starting with the first command that cannot be found in the active set of command
tables. If all commands have been processed, the variable will be blank.

The ret-length-name variable contains the length of the string in the ret-buffer-name
variable. If all commands have been processed, either by the DISPLAY
COMMAND dialog or a dialog invoked to process a command in the stack, the
length will be zero.

One or more of the commands in the command chain can be processed by the
dialogs initiated from previous valid commands in the chain. Processing those
commands will be the same as if the command chain had been entered from the
primary input field of the dialog's panel. Errors encountered because of these
commands must be handled by the dialog.

There are two cases in which the panel specified on the original DISPLAY
COMMAND service request is displayed:
v First, when a command error, which results in a message such as “command

NOT ACTIVE” or “INVALID command PARM” occurs, the current panel is
presented, along with the corresponding message, in normal DISPLAY mode.
This occurs even if the current panel is the panel specified on the original
DISPLAY COMMAND call. To return to the dialog, the user has to enter the
END command or an equivalent.

v The second case is when a SPLIT or SPLITV command is executed from the
stack as input from the original panel. That panel is displayed on part of the
physical screen. Control is not immediately returned to the dialog if execution of
the command chain results in SPLIT, SPLITV, or SWAP. In this case the user
must re-activate the original screen, such as enter SWAP, to give the dialog
control once again.

Note:

1. If the panel displayed with the COMMAND option has its primary input
field initialized to a nonblank value, that string will not be concatenated to
the end of the command chain.

2. A CONTROL NOCMD pending at the time the DISPLAY COMMAND
service is issued will be canceled.

3. ISPF does not support the jump function when the COMMAND option is
being executed. ISPF deletes any equal signs (=) preceding a command, but
the command remains in the stack.

Return codes
These return codes are possible:

0 Normal completion.

For the COMMAND option, the ret-buffer-name is set to blanks and the
ret-length-name is set to zero. Passing an empty command chain buffer also
results in a normal completion.

4 One or more commands in the stack could not be found in the active set of
command tables.

8 User requested termination using the END or RETURN command. If
CANCEL and EXIT are requested from a panel displayed using the
DISPLAY service call and the panel was defined with the dialog tag
language (DTL), the dialog manager returns the command in ZVERB and
sets a return code of 8 from the display screen.

DISPLAY

52 z/OS V2R2 ISPF Services Guide

12 The specified panel, message, message location field, or cursor field could
not be found.

16 Truncation or translation error in storing defined variables.

20 Severe error.

Examples
See:
v “Example 1: Display variables and message, set cursor position”
v “Example 2: Unknown command handled by DISPLAY”
v “Example 3: Unknown command handled by dialog” on page 54
v “Example 4: Command stack contains an invalid parameter” on page 54
v “Example 5: Display message in a pop-up window” on page 54

Example 1: Display variables and message, set cursor position
Panel definition XYZ specifies display of variables AAA and KLM as input fields.
Using this definition, invoke services to display these variables at the terminal and
superimpose, on line 1, the short form text of message number ABCX013. Place the
cursor, on the display, at the beginning of input field KLM, ready for entry of data
by the person at the terminal.
ISPEXEC DISPLAY PANEL(XYZ) MSG(ABCX013) CURSOR(KLM)

or Set the program variable BUFFER to contain:
DISPLAY PANEL(XYZ) MSG(ABCX013) CURSOR(KLM)

Set program variable BUFLEN to the length of the variable BUFFER. Enter the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’DISPLAY ’,’XYZ ’,’ABCX013 ’,’KLM ’);

Example 2: Unknown command handled by DISPLAY
Pass a command stack to ISPF to cause:
v The display screen to split horizontally at the line on which the cursor was

positioned when the DISPLAY COMMAND was issued
v Control to return to the top screen (SWAP)
v A command, CHECK, to be issued on the top screen (assume CHECK does not

exist in the active set of command tables).

Function pool variable STACKA contains the command string:
SPLIT;SWAP;CHECK

Issue:
ISPEXEC DISPLAY PANEL(PANA) COMMAND(STACKA) RETBUFFR(BUFFA) RETLGTH(LGTHA)

or alternately
CALL ISPLINK (’DISPLAY ’,’PANA ’,’ ’,’ ’,’ ’,’STACKA ’,’BUFFA ’,’LGTHA ’);

Because ISPF cannot find the command CHECK in a command table, processing of
the command stack terminates at that point. ISPF places the unprocessed
command, CHECK, in variable BUFFA, and sets variable LGTHA to 5. The
DISPLAY service terminates with a return code of 4.

DISPLAY

Chapter 2. Description of the ISPF services 53

Example 3: Unknown command handled by dialog
Pass a command stack to ISPF to cause the:
v Function key definition panel, containing the INVALID COMMAND message, to

display
v Primary input field (PIF) of the panel to be set to CHECK
v Alarm to sound.

Function pool variable STACKA contains the command string:
KEYS;CHECK

Issue:
ISPEXEC DISPLAY PANEL(PANA) COMMAND(STACKA) RETBUFFR(BUFFA) RETLGTH(LGTHA)

or alternately
CALL ISPLINK (’DISPLAY ’,’PANA ’,’ ’,’ ’,’ ’,’STACKA ’,’BUFFA ’,’LGTHA ’);

ISPF cannot find the command CHECK in any active command table. Because the
unidentified command error is encountered by the KEYS dialog, rather than the
DISPLAY service, it is the responsibility of the dialog to process the error. In this
case, the KEYS dialog displays a message indicating that CHECK was not found.
Upon return from the KEYS dialog, the DISPLAY service sets the return buffer,
BUFFA, to blanks, sets variable LGTHA to 0, and terminates with a return code of
0.

Example 4: Command stack contains an invalid parameter
Pass a command stack to ISPF to cause:
v PANA, containing the INVALID PFSHOW PARM message, to display
v The alarm to sound.

Function pool variable STACKA contains the command:
PFSHOW COLOR

Issue:
ISPEXEC DISPLAY PANEL(PANA) COMMAND(STACKA) RETBUFFR(BUFFA) RETLGTH(LGTHA)

or alternately
CALL ISPLINK (’DISPLAY ’,’PANA ’,’ ’,’ ’,’ ’,’STACKA ’,’BUFFA ’,’LGTHA ’);

COLOR is not a valid parameter on the PFSHOW command. Therefore, PANA
displays. In this case, the user exits from PANA normally (ENTER, END, or
RETURN). The DISPLAY service returns control to the dialog with a return code of
0.

Example 5: Display message in a pop-up window
This DISPLAY request displays message TSTA110 in a message pop-up window
that permits interaction with the underlying panel. The message pop-up window is
positioned relative to the field FLD1.
PROC 0
ISPEXEC DISPLAY PANEL(A) MSG(TSTA110) MSGLOC(FLD1)

Using this message definition for TSTA110
TSTA110 .WINDOW=NORESP
’ENTER NUMERIC DATA’

DISPLAY

54 z/OS V2R2 ISPF Services Guide

Results in:

DSINFO—data set information dialog service
The DSINFO service returns assorted information about a particular data set in
dialog variables in the function pool. The information returned is the same as that
displayed when you use ISPF Option 3.2 or Option 3.4 commands. Additionally,
DSINFO returns the unformatted DSCB format1. DSINFO does not require an
LMINIT to be performed first.

Command invocation format

�� ISPEXEC DSINFO DATASET(dsname)
VOLUME(serial)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('DSINFO��' , dsname
'�'

, serial
'�'

��

Parameters
dsname

Specifies the data set name, in TSO syntax, of the data set that you want
information about. This parameter must be a 46-byte length field for the call
invocation format.

serial
Specifies the serial number of the volume on which the data set can be found.
This is only required if the data set is uncataloged.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

PANEL A

FIELD===> FLD1
┌────────────────────┐
│ │
│ ENTER NUMERIC DATA │
│ │
!────────────────────┘

DISPLAY

Chapter 2. Description of the ISPF services 55

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

The DSINFO service saves these dialog variables in the function pool:

Table 5. Dialog variables saved by the DSINFO service

Variable Information Type Length

ZDSVOL First or only volume Character 6

ZDS#VOLS Number of volumes Character 2

ZDSDEVT Device type Character 8

ZDSORG Data set organization Character 8

ZDSRF Record format Character 6

ZDSLREC Logical record length Character 7

ZDSBLK Block size Character 6

ZDSSPC Primary space units Character 8

ZDS1EX Primary space allocation Character 13

ZDS2SPC Secondary space units Character 8

ZDS2EX Secondary space allocation Character 13

ZDSTOTAX Allocated space units (long format) Character 18

ZDSTOTUX Used space units (long format) Character 18

ZDSDSNT Data set name type Character 8

ZDSSEQ Compressible (YES/NO) Character 4

ZDSCDATE Creation date (National format) Character 10

ZDSXDATE Expiration date (National format) Character 10

ZDSRDATE Referenced date (National format) Character 10

ZDSTOTA Allocated space units Character 13

ZDSTOTU Used space units Character 13

ZDSEXTA Allocated extents Character 7

ZDSEXTU Used extents Character 7

ZDSDIRA Allocated directory blocks Character 6

ZDSDIRU Used directory blocks Character 8

ZDSDIR PDSE directory blocks Character 8

ZDS#MEM Number of members Character 13

ZDSPAGU Pages used (PDSE) Character 13

ZDSPERU Percent used (PDSE) Character 13

ZDSMC Management class Character 8

ZDSSC Storage class Character 8

ZDSDC Data class Character 8

ZDSAPF APF status of the data set (YES/NO/ERR) Character 4

ZDSLNK LNKLST status of the data set (YES/NO/ERR) Character 4

ZDSCB1 Format 1 data control block Character 96

DSINFO

56 z/OS V2R2 ISPF Services Guide

Table 5. Dialog variables saved by the DSINFO service (continued)

Variable Information Type Length

ZDSVTAB Volume table (contains all of the volume names
for a multivolume set)

Character 354

ZDSOVF Indicates that ZDSTOTAX and ZDSTOTUX
should be used instead of ZDSTOTA and
ZDSTOTU.

Character 3

ZDSEATR Extended attribute indicator Character 4

ZDSCJOBN Create jobname Character 8

ZDSCSTPN Create stepname Character 8

ZDSDSNV Data set version Character 1

ZDSNGEN Maximum number of generations Character 8

Note: ISPF cannot calculate reliable space utilization values for BDAM data sets.
Therefore, the DSINFO service returns question marks (?) in variables that contain
space utilization data when reporting on BDAM data sets.

Return codes
These return codes are possible:

0 Normal completion.

8 User requested information unavailable. Dialog error variables (ZERRLM,
and so on) contain further information.

12 One of these:
v FAMS error
v Obtain error
v Error obtaining directory information

20 Severe error.

Example
This example shows an invocation of DSINFO to obtain information about a
cataloged data set.

Command Invocation
ISPEXEC DSINFO DATASET(DSNAME)

Call Invocation
CALL ISPLINK(’DSINFO ’,DSNAME);

or Set the program variable BUFFER to contain:
BUFFER = ’DSINFO DATASET(DSNAME)’;

Set program variable BUFLEN to the length of the variable BUFFER. Enter the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

DSINFO

Chapter 2. Description of the ISPF services 57

|

EDIF—Edit interface
The Edit Interface (EDIF) service provides edit functions for data accessed through
dialog-supplied I/O routines. The invoking dialog must perform all
environment-dependent functions such as file allocation, opening, reading, writing,
closing, and freeing. The dialog is also responsible for any Enqueue/Dequeue
serialization that is required. With the dialog providing the I/O routines, EDIF
allows you to:
v Edit data other than partitioned data sets or sequential files such as subsystem

data, and in-storage data.
v Do preprocessing and post-processing of the data being edited.

The invoking dialog must provide addresses to routines that:
v Read the data sequentially from beginning to end, returning to Edit one record

on each invocation.
v Write the data sequentially from beginning to end, accepting one record from

Edit on each invocation.
v Perform processing for the MOVE, COPY, CREATE, REPLACE, and EDIT

primary commands. If this routine is not specified, ISPF processes these
commands.

All addresses must be 31-bit addresses, and the routines must have an addressing
mode (AMODE) of 31.

When an Edit session is operating in recovery mode, a record of your interactions
is automatically recorded in an ISPF-controlled data set. Following a system failure,
you can use the record to recover the data you were editing.

Note: Dialogs that invoke the EDIF service may invoke the EDIREC service first to
determine if a pending recovery condition exists.

A dialog using EDIF can place data into the ZEIUSER dialog variable in the shared
pool. When the system initializes the recovery data set, the system also saves the
data in ZEIUSER in the Edit recovery table as an extension variable. This is done if
RECOVERY is ON when first entering Edit or after you use the SAVE command.
This data is then made available in dialog variable ZEIUSER at the time edit
recovery is processed.

Command invocation format
You cannot use command procedures to invoke this service.

Call invocation format
The format for invoking EDIF can be different depending on whether you want to
process a pending edit recovery. If you do not want to process a pending edit
recovery, the format is:

�� CALL ISPLINK ('EDIF����' , data-name
'�'

,profile-name ,rec-format �

EDIF

58 z/OS V2R2 ISPF Services Guide

� ,rec-len ,read-routine, write-routine , cmd-routine
'�'

�

� , dialog-data
'�'

, edit-len
'�'

, panel-name
'�'

, macro-name
'�'

�

� , format-name
'�'

'NO������'
, '�'

'YES�����'

'NO������'
, '�'

'YES�����'
, parm-var

'�'
�

� , tabname
'�'

); ��

You must use the EDIF service to recover data edited in a previous EDIF session.
You must invoke the EDIREC service first to see if a recovery is pending. If you
want to process a pending recovery, use this format for EDIF, specifying YES for
the recovery-request parameter:

�� CALL ISPLINK ('EDIF����' , data-name
'�'

,'�' , rec-format
'�'

, �

� rec-len
'�'

,read-routine ,write-routine , cmd-routine
'�'

, �

� dialog-data
'�'

,'�' ,'�' ,'�' ,'�' ,'�' �

� ,'YES����� ,'�' , tabname ');
'�'

��

Parameters
data-name

This parameter allows you to specify a data name for the source data to be
edited. This name appears in the title line of the default Edit panel. It is also
the target data name for an edit recovery table entry when edit recovery is
active. This name must not have any embedded blanks, and its maximum
length is 54 characters. This name is stored in ZDSNT in the function pool.

profile-name
The name of the edit profile to be used. This parameter is required when
recovery-request = NO or is not specified; otherwise, it is not allowed.

rec-format
The record format: F - fixed, V - variable. This parameter is required when
recovery-request = NO or is not specified; otherwise, it is optional, but it must
be the same record format that was specified when recovery was initiated for
the data.

rec-len
The record length, in bytes. It must be a positive numeric value between 10
and 32760, inclusive. For variable record format, this is the maximum record
length. This parameter is required when recovery-request = NO or is not
specified; otherwise, it is optional, but it must be the same record length that
was specified when recovery was initiated for the data.

EDIF

Chapter 2. Description of the ISPF services 59

|||

|||

read-routine
A fullword address indicating the entry point of a dialog-supplied read routine
(required). It is recommended that the high-order bit of this value be set ON.
See “Read routine” on page 62 for more information about this parameter.

write-routine
A fullword address indicating the entry point of a dialog-supplied write
routine (required). It is recommended that the high-order bit of this value be
set ON. See “Write routine” on page 62 for more information about this
parameter.

cmd-routine
A fullword address indicating the entry point of a dialog-supplied routine that
processes the MOVE, COPY, CREATE, REPLACE, and EDIT primary
commands. It is recommended that the high-order bit of this value be set ON.
See “Command routine” on page 63 for more information about this
parameter. If this parameter is not specified, ISPF processes these commands.

dialog-data
A fullword address indicating the beginning of a dialog data area. This address
is passed to the dialog-supplied routines. If no address is supplied, zeros are
passed to the dialog routines. This data area provides a communication area
for the dialog.

edit-len
The length, in bytes, of the data to be displayed for editing. This parameter
indicates that the data records should be considered to have a length shorter
than rec-len during editing. Thus, the dialog may include data in the record
that is not accessible for editing.

Edit-len must be a numeric value between 10 and 32760, inclusive, and must
be less than or equal to parameter rec-len. Rec-len is the default. If the edit-len
parameter is specified, the data that is not displayed are the bytes from
(edit-len +1) to rec-len. That means the inaccessible record data is at the end of
the record.

The edit-len parameter is optional when recovery-request = NO or is not
specified; otherwise, it is not allowed. The edit-len parameter is not allowed
when format-name is specified.

panel-name
The name of the panel to use for displaying the data. This parameter is
optional when recovery-request = NO or is not specified; otherwise, it is not
allowed. The default is the standard Edit data display panel. See z/OS V2R2
ISPF Planning and Customizing for information about developing a customized
panel.

macro-name
The name of the initial macro to be executed. This parameter is optional when
recovery-request = NO or is not specified; otherwise, it is not allowed. The
default is no initial macro. See z/OS V2R2 ISPF Edit and Edit Macros for more
information on macros.

format-name
The name of the format to be used to reformat the data. This parameter is
optional when recovery-request = NO or is not specified; otherwise, it is not
allowed. The default is no format. This parameter is provided to support the
IBM 5550 terminal using the Double-Byte Character Set (DBCS). This
parameter is not allowed when the edit-len parameter is specified.

EDIF

60 z/OS V2R2 ISPF Services Guide

|

|
|

|

YES|NO (mixed-mode)
Specifies whether the data is treated as mixed-mode DBCS data. This
parameter is optional when recovery-request = NO or is not specified;
otherwise, it is not allowed. If YES is specified, the EDIF service treats the data
as mixed-mode DBCS data. If NO (the default) is specified, the data is treated
as EBCDIC (single-byte) data. This parameter is provided to support the IBM
5550 terminal using the Double-Byte Character Set (DBCS).

YES|NO (recovery-request)
Specifies whether to process a pending edit recovery that was being edited
with the EDIF service when a system failure occurred. If YES is specified, the
edit recovery should proceed. This function is similar to the EDREC service
with the PROCESS option. If YES is specified to process the edit recovery, you
must specify the read routine and write routine, but you must not specify
profile name, edit-len, panel-name, macro-name, format-name and
mixed-mode. If NO is specified, no edit recovery is processed; EDIF edits the
specified data.

parm-var
The name of an ISPF variable that contains parameters which are to be passed
to the initial macro specified by macro-name. The variable value must not
exceed 200 bytes in length. If no macro name is specified, parm-var must be
blank or not specified.

tabname
The name of a user line command table to be used for the edit session. The
value must be 8 characters, blank padded.

Dialog-supplied routines
All dialog-supplied routines are invoked using standard linkage. All addresses
must be 31-bit addresses, and the addressing mode (AMODE) of the routines must
be AMODE=31.

An EDIF read or write routine must have an assembler interface to be used in a
call to EDIF.

The dialog-supplied read, write, and command processing routines are called
directly by ISPF at the same task level (TCB) that displays ISPF screens. If you
need to ensure that your program runs at the same task level as the routines, use
the SELECT PGM() service to start your program. This may be a factor if your
program expects to create or share data spaces or other task-specific resources
between the main program and the read, write, or command routines.

Note:

1. The read, write, and command exits can be written in languages that use the
Language Environment runtime environment, provided the runtime
environment has the Language Environment TRAP(ON) option set. However, a
mixture of Language Environment-conforming main dialog code and service
routine code is not supported. Dialogs and service routines must either all be
Language Environment-conforming or all be Language Environment-
nonconforming.

2. Language Environment applications that use the ISPF BRIF or EDIF service
must use the Language Environment OS_UPSTACK option. For ISPF to invoke
the user routines with a valid LE dynamic save area, the Language

EDIF

Chapter 2. Description of the ISPF services 61

|
|
|

Environment application must issue a CONTROL LE ON service request before
each BRIF or EDIF service request and a CONTROL LE OFF service request after
each BRIF or EDIF service request.

Read routine
EDIF calls the read routine repeatedly to obtain all of the data records to be edited
at the beginning of the Edit session. This routine is also called to obtain data
records for the MOVE and COPY commands when the dialog is handling the
processing for these commands. The dialog-supplied read routine is invoked with
these parameters:
v Fullword pointer to record data read (output from read routine)
v Fullword fixed binary data length of record read if rec-format is V
v Fullword fixed binary request code. Request settings are as follows:

0 Read next record
1 First read request

v Fullword dialog data area address.

Write routine
EDIF calls the write routine repeatedly to write the data records, for example,
whenever data changes are to be saved with the SAVE, END, and RETURN
commands, and the jump function. EDIF also calls the write routine to write data
records for the CREATE and REPLACE commands when the dialog is handling the
processing for these commands. The write routine is given flags that indicate the
source and change status for each record.

The dialog-supplied write routine is invoked with these parameters:
v Fullword pointer to record data to be written.
v Fullword fixed binary data length of record to be written if rec-format is V. This

is the length of the nonblank portion of the record. The entire record with
trailing blanks up to the maximum rec-len is available.

v Fullword of source and change bits for the record. The bit representation is as
follows:
Source bits:

1 = original record
2 = internal move (Move line command)
3 = internal copy/repeat (Copy/Repeat line commands)
4 = external move (MOVE primary command)
5 = external copy (COPY primary command)
6 = text inserted (TE line command)
7 = typed inserted (Insert line command)

Change bits:
8 = record changed (global bit; set for all changes)
9 = data overtyped
10 = change command (CHANGE primary command)

or overlay change (Overlay line command)
11 = columns shifted ((,((,),)) line commands)
12 = data shifted (<,<<,>,>> line commands)
13 = text change (TE, TF, TS line commands)
14 = record renumbered
15-32 = unused

Multiple bits may be set on, indicating that more than one modification has
occurred for the record. For example, a data record that is inserted by using the
INSERT line command and is later included in a text flow operation would have
bits 7 (typed inserted), 8 (change), 9 (data overtyped) and 13 (text changed)
turned on.

EDIF

62 z/OS V2R2 ISPF Services Guide

Records read in for the initial display are flagged as original records. Whenever
there is hidden data, the inaccessible portion of inserted records contains blanks.
Records are copied in their entirety; that is, including both the visible and
hidden portions of the data. Deleted records are not presented to the write
routine.

v Fullword fixed binary request code. Request settings are as follows:

0 Write the next record
1 First write request
2 Last write request (final data record provided)
3 First and last write request (only one data record)
4 No data records to write (all records have been deleted)

v Fullword dialog data area address.

Command routine
The dialog-supplied command routine, when specified, processes the MOVE,
COPY, CREATE, REPLACE, and EDIT primary commands. The command routine
is invoked with these parameters:
v Fullword fixed binary function code word. Decimal values of function settings

are as follows:

1n Move
2n Copy
3n Create
4n Replace
5n Recursive edit

where n is 0 (beginning of function), 1 (successful completion), or 2
(unsuccessful completion). This n value will always be 0 for a recursive Edit
function; that is, the Edit request code will be 50.

v Fullword dialog data area address.

To access parameters that can follow the command, the command routine must
access the ZCMD dialog variable from the SHARED variable pool.

For a MOVE, COPY, CREATE, or REPLACE, the command routine initiates the
processing for the requested function. When the return code from the command
routine is zero, EDIF calls the read or write routine to transfer the data. After the
read or write is completed, the command routine is called once more to handle any
termination processing that may be required for the requested function. For
example, the MOVE function would need to delete the data that was moved.

For the EDIT command, the command routine must perform all processing
required to effect the desired results for the purposes of the dialog. For example,
the dialog can consider the EDIT command to be an invalid command. The
command routine is called only once for each EDIT command.

Return codes
When a dialog routine terminates with a return code (12 or higher or an
unexpected return code), the dialog can issue a SETMSG to generate a message on
the next panel display. If the dialog does not set a message, the EDIF service will
issue a default message.

EDIF

Chapter 2. Description of the ISPF services 63

Read routine
0 Normal completion.

8 End of data records (no data record returned).

16 Read error. If a read error is encountered when the system builds the initial
edit display, the EDIF service terminates with a return code of 20.
Otherwise, the edit data is redisplayed.

20 Severe error. (The EDIF service terminates immediately with a return code
of 20.)

Write Routine Return Codes
0 Normal completion.

16 Output error, return to Edit mode.

20 Severe error. (The EDIF service terminates immediately with a return code
of 20.)

Command Routine Return Codes
0 Normal completion.

4 ISPF should process the requested function.

12 Command deferred; retain the command on the Command line. Edit data
is redisplayed.

20 Severe error. (The EDIF service terminates immediately with a return code
of 20.)

EDIF Service Return Codes
0 Normal completion, data saved.

4 Normal completion, data not saved.

16 Unexpected return code received from a dialog-supplied routine. When an
unexpected return code is received, the EDIF service terminates
immediately with a return code of 16.

20 Severe error; unable to continue.

After the Edit session has been terminated, control is returned to the invoking
dialog with a return code indicating the completion status.

Example
This example invokes the EDIF service to edit data called EDIFDSN, which has a
fixed-record format with a record length of 80 characters. An edit profile
(EDIFPROF), read routine (RDRTN), write routine (WRRTN), and command
routine (CMDRTN) are supplied, as is a dialog data area (MYDATA).

Call invocation
CALL ISPLINK (’EDIF ’,’EDIFDSN ’,’EDIFPROF ’,’F ’,80,

RDRTN,WRRTN,CMDRTN,MYDATA);

For a more complete example of using EDIF, including dialog-supplied I/O
routines and source code, see the z/OS V2R2 ISPF Dialog Developer's Guide and
Reference.

EDIF

64 z/OS V2R2 ISPF Services Guide

EDIREC - Initialize Edit Recovery
The EDIREC service initializes an edit recovery table (ISREIRT) for use by the EDIF
service and determines whether recovery from the EDIF service is pending.
EDIREC also allows you to cancel or defer the recovery of data modifications.

Command invocation format
You cannot use command procedures to invoke this service.

Call invocation format

�� CALL ISPLINK ('EDIREC��' , 'INIT����' , command-name
'�'

'QUERY���'
'CANCEL��'
'DEFER���'

); ��

Parameters
INIT

The edit recovery table for EDIF should be initialized in the user profile library
if one does not already exist for the current application.

command-name
A command procedure (CLIST or REXX exec) or a program written as a
command that initializes the EDIF table. If this parameter is omitted, the INIT
option invokes an ISPF-supplied CLIST named ISREIRTI. ISREIRTI creates an
8-row EDIF recovery table that permits eight levels of concurrent Edit sessions
with recovery active. The Edit sessions may be due to recursion or split-screen
usage.

If you specify an application-supplied command with the INIT option, you
should pattern the command after ISREIRTI. It can create a different number of
rows, use a different naming convention for the backup data sets, or specify
“keep” (instead of “delete”) as the backup data set disposition. The format of
the EDIF recovery table must be the same as that specified in ISREIRTI.

QUERY
The EDIF recovery table should be searched for a pending recovery. When the
QUERY option is specified, EDIREC scans the EDIF recovery table for an entry
containing a recovery pending condition. If an entry is found (return code 4),
the dialog must then call EDIF with (recovery-request = YES) to recover the
data, or call EDIREC with the CANCEL or DEFER option to dispose of the
pending recovery condition.

These variables are stored in the dialog function pool when EDIREC is called
with the QUERY option and recovery is pending (return code 4):
v ZEIBDSN - Backup data name
v ZEITDSN - Target data name
v ZEIROW - Row number of entry in the recovery table.

The dialog can check the variables and use them to display information to the
user. The dialog must not change them. If EDIREC QUERY indicates that
recovery is not pending, the previous variables are not meaningful.

ZEIUSER is an extension variable in the EDIF recovery table that is provided
to contain user data. Whatever data is in dialog variable ZEIUSER in the

EDIREC

Chapter 2. Description of the ISPF services 65

shared pool is saved to the ZEIUSER variable in the EDIF recovery table when
the recovery data set is initialized. This is done if RECOVERY is ON when first
entering Edit or after using the SAVE command.

When EDIREC is called with the QUERY option and the return code is 4,
indicating that recovery is pending, the data is read out of ZEIUSER in the
table and returned to ZEIUSER in the shared and function pools. If recovery is
not pending, this variable is not meaningful.

CANCEL
Cancellation of edit recovery. The backup data set is erased and the
corresponding entry in the EDIF recovery table is freed.

DEFER
Edit recovery is to be deferred. Recovery is canceled, but the backup data set is
saved so that recovery can be processed at another time.

Return codes
These return codes are possible:

0 Normal completion.
v INIT - EDIF recovery table was successfully created.
v QUERY - Recovery is not pending.

4 Normal completion.
v INIT - EDIF recovery table already exists for current application.
v QUERY - Entry found in EDIF recovery table (recovery is pending).

20 Severe error; unable to continue.

Example
This example invokes the EDIREC service to initialize the EDIF recovery table by
using the command procedure USRCMD.
CALL ISPLINK(’EDIREC ’,’INIT ’,’USRCMD ’);

EDIT—edit a data set
The EDIT service provides an interface to the ISPF editor and bypasses the display
of the Edit Entry Panel. The EDIT interface allows you to use a customized panel
for displaying data (use panel ISREFR01 as a model when creating your panel),
and lets you specify the initial macro and the edit profile to be used. You can use
EDIT to look at any ISPF library, concatenation of ISPF libraries, or data set that
can be allocated by using the LMINIT service. You can use the EDIT service
recursively, either through nested dialogs or by entering an EDIT command while
editing. z/OS V2R2 ISPF Edit and Edit Macros contains a complete description of the
editor.

When EDIT is operating in recovery mode, an audit trail of your interactions is
automatically recorded in an ISPF-controlled data set. Following a system failure,
you can use the audit trail to recover the data you were editing.

Note:

1. Dialogs that invoke the EDIT service may invoke the EDREC service first to
start edit recovery, because the EDIT service does not do edit recovery.

2. The EDIT service might alter the DISPLAY environment. Do not expect the
DISPLAY environment that existed before invoking the EDIT service to remain
unchanged.

EDIREC

66 z/OS V2R2 ISPF Services Guide

3. The EDIT service cannot be issued by a PL/I main program that also uses
subtasking.

4. When designing applications that will use the EDIT service, be aware that you
cannot run EDIT in a pop-up window.

A dialog using EDIT can place data into the ZEDUSER dialog variable in the
shared pool. The data in ZEDUSER is saved in the edit recovery table as an
extension variable when the recovery data set is initialized. This is done if
RECOVERY is ON when first entering Edit or after using the SAVE command. This
data is then made available in dialog variable ZEDUSER at the time edit recovery
is processed.

You can use EDIT to edit workstation files on the host and host data sets on the
workstation. This function is called distributed editing.

The ZWSWFN variable is the workstation working file name that is generated by
ISPF. The variable ZLRECL is the LRECL of the host data set being edited. Both
can be used in the workstation EDIT parameters field. ISPF interprets any string
that starts with an ampersand (&) as a system variable and evaluates it before
passing to the workstation command. Strings that do not start with an ampersand
are passed as is. The EDIT service edits the host data set or workstation file on the
workstation, using the workstation editor configured in the ISPF Workstation Tool
Integration Program. For more information about the Integration program, refer to
the z/OS V2R2 ISPF User's Guide Vol II.

Restrictions when using distributed editing:

1. This type of edit does not support uncataloged data sets.
2. Take care when uploading to the host files that contain extended ASCII

characters. For example, uploading a Microsoft Word *.DOC file to the host,
using ISPF Edit to edit it, then saving it, can result in a corrupted file.

3. Some characters that are normally valid for a directory or file name might not
be supported when using distributed editing. For example, the caret symbol
(^, or shift-6 in GUI mode) is supported in a directory or file name on
Windows but is ignored by some implementations of the TCP/IP File Transfer
Protocol.

4. Some workstation editors might not work for multiple modal invocations. After
the first invocation of some editors, any subsequent invocation of the same
editor passes control to the first invocation when a command is issued in the
second invocation, and the second invocation shuts down.

Besides the Edit program name, you can specify batch commands in the
Workstation Edit field. If you have a file transferred to the workstation that you
wish to do some work on besides Edit, you can do that in the beginning of the
batch file before invoking the editor. Depending on the parameters passed to the
batch command, you can also have conditional logic to perform other functions.

Command invocation format

�� ISPEXEC EDIT DATASET(dsname)
VOLUME(serial)

�

EDIT

Chapter 2. Description of the ISPF services 67

�
PASSWORD(pswd-value) PANEL(panel-name) MACRO(macro-name)

�

�
PROFILE(profile-name) FORMAT(format-name) NO

MIXED(YES)

�

�
NO

LOCK(YES)
YES

CONFIRM(NO)
NO

WS(YES)

�

�
WRAP PRESERVE PARM(parm-var) ASCII

UTF8
LINECMDS(tabname)

��

or

�� ISPEXEC EDIT DATAID(dsname)
MEMBER(member-name)

GEN(generation)

�

�
PANEL(panel-name) MACRO(macro-name) PROFILE(profile-name)

�

�
FORMAT(format-name) NO

MIXED(YES)
NO

LOCK(YES)

�

�
YES

CONFIRM(NO)
NO

WS(YES)
WRAP PRESERVE

�

�
PARM(parm-var) ASCII

UTF8
LINECMDS(tabname)

��

or

�� ISPEXEC EDIT WSFN(ws-filename)
PANEL(panel-name)

�

�
MACRO(macro-name) PROFILE(profile-name) FORMAT(format-name)

�

�
NO

MIXED(YES)
NO

LOCK(YES)
YES

CONFIRM(NO)

�

�
NO

WS(YES)
WRAP PRESERVE PARM(parm-var)

��

or

�� ISPEXEC EDIT FILE(file-var)
PANEL(panel-name)

�

EDIT

68 z/OS V2R2 ISPF Services Guide

|

�
MACRO(macro-name) PROFILE(profile-name) FORMAT(format-name)

�

�
NO

MIXED(YES)
NO

LOCK(YES)
YES

CONFIRM(NO)

�

�
NO

WS(YES)
WRAP PRESERVE PARM(parm-var)

�

�
RECLEN(rec-len) ASCII

UTF8
LINECMDS(tabname)

��

Call invocation format

�� CALL ISPLINK ('EDIT����' ,
dsname

, serial
'�'

, pswd-value
'�'

�

� , panel-name
'�'

, macro-name
'�'

, profile-name
'�'

,
data-id

�

� , member-name
'�'

, format-name
'�'

'NO������'
, '�'

'YES�����'

'NO������'
, '�'

'YES�����'
�

�
'YES�����'

, '�'
'NO������'

,
ws-filename-buffer-name

'NO������'
, '�'

'YES�����'
�

� , 'WRAP����'
'�'

, 'PRESERVE'
'�'

'YES�����'
, '�'

'NO������'
, parm-var

'�'
, �

�
file-var

, rec-len
'�'

, 'ASCII���'
'UTF8����'
'�'

�

� , tabname ,);
'�' generation

��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
dsname

The data set name, in TSO syntax, of the data set to be edited. This is
equivalent to the “other” data set name on the Edit Entry Panel. You can
specify a fully qualified data set name enclosed in apostrophes (’ ’). If the

EDIT

Chapter 2. Description of the ISPF services 69

|

apostrophes are omitted, the TSO data set prefix from the user's TSO profile is
automatically attached to the data set name. The maximum length of this
parameter is 56 characters.

For ISPF libraries and MVS partitioned data sets, you can specify a member
name or a pattern enclosed in parentheses. If you do not specify a member
name or if you specify a member pattern as part of the dsname specification
when the DATASET keyword is used, a member selection list for the ISPF
library, concatenation of libraries, or MVS partitioned data set is displayed. See
the z/OS V2R2 ISPF User's Guide Vol I for more information about patterns and
pattern matching.

Note: You can also specify a VSAM data set name. If a VSAM data set is
specified, ISPF checks the ISPF configuration table to see if VSAM support is
enabled. If it is, the specified tool is invoked. If VSAM support is not enabled,
an error message is displayed.

serial
The serial number of the volume on which the data set resides. If you omit this
parameter or code it as blank, the system catalog is searched for the data set
name. The maximum length of this parameter is 6 characters.

pswd-value
The password if the data set has MVS password protection. Do not specify a
password for RACF-protected data sets.

panel-name
The name of a customized edit panel, created by you, to be used when
displaying the data. See z/OS V2R2 ISPF Planning and Customizing for
information about developing a customized panel.

macro-name
The name of the first edit macro to be executed after the data is read, but
before it is displayed. See z/OS V2R2 ISPF Edit and Edit Macros for more
information.

profile-name
The name of the edit profile to be used. If you do not specify a profile name,
the profile name defaults to the ISPF library type or last qualifier of the
“other” TSO data set name. See the z/OS V2R2 ISPF Edit and Edit Macros for
more information.

data-id
The data ID that was returned from the LMINIT service. The maximum length
of this parameter is 8 characters.

You can use the LMINIT service in either of two ways before invoking the
EDIT service:
v You can use LMINIT to allocate existing data sets by specifying a data set

name or ISPF library qualifiers. LMINIT returns a data ID as output. This
data ID, rather than a data set name, is then passed as input to the EDIT
service.

v The dialog can allocate its own data sets by using the TSO ALLOCATE
command or MVS dynamic allocation, and then passing the ddname to
LMINIT. Again, a data ID is returned as output from LMINIT and
subsequently passed to the EDIT service. This procedure is called the ddname
interface to EDIT. It is particularly useful for editing VIO data sets, which
cannot be accessed by data set name because they are not cataloged.

EDIT

70 z/OS V2R2 ISPF Services Guide

member-name
A member of an ISPF library or MVS partitioned data set, or a pattern. If you
do not specify a member name when the MEMBER keyword or call invocation
is used, or if a pattern is specified, a member selection list for the ISPF library,
concatenation of libraries, or MVS partitioned data set is displayed. See the
z/OS V2R2 ISPF User's Guide Vol I for more information about patterns and
pattern matching.

generation
A fullword fixed integer containing the relative or absolute generation of the
member to be edited. If the value is negative, it is a relative generation. If the
value is positive, it is an absolute generation that the caller has determined to
be valid. The value 0 (zero) indicates the current generation and is equivalent
to not specifying the parameter. This parameter is valid only when the
specified member is in a PDSE version 2 data set that is configured for
member generations.

format-name
The name of the format to be used to reformat the data. The format-name
parameter is provided to support the IBM 5550 terminal using the Double-Byte
Character Set (DBCS).

YES|NO
For the MIXED parameter, if YES is specified, the EDIT service treats the data
as mixed-mode DBCS data. If NO is specified, the data is treated as EBCDIC
(single-byte) data. This parameter is provided to support the IBM 5550
terminal using the Double-Byte Character Set (DBCS).

YES|NO
The LOCK parameter is no longer used since the removal of LMF from the
ISPF product, but is left in for compatibility purposes. If YES is specified the
edit service will fail with return code 12. If you want to be able to specify YES
and have the editor ignore the value, change the FAIL_ON_LMF_LOCK
keyword value in the ISPF Configuration Table to NO.

YES|NO
For the CONFIRM parameter, if you specify YES and then attempt to
CANCEL, MOVE, or REPLACE data while in EDIT mode, ISPF displays a
pop-up panel that requires you to confirm the action. Because members or data
sets that are moved, canceled, or replaced are deleted, CONFIRM acts as a
safeguard against accidental data loss. If you want to terminate the edit session
without saving the data, press ENTER. If you made a mistake and want to
return to the edit session, enter the END command. If you specify NO as the
CONFIRM value, you will not be required to confirm a CANCEL, MOVE, or
REPLACE.

ws-filename-buffer-name
Specifies the name of a variable containing the path and the file name in the
workstation's file system syntax of the workstation file to be edited. The
maximum length of the path and the workstation file name within this variable
is 256. If the path is omitted, the working directory configured in the ISPF tool
integrator will be inserted in front of the workstation file name to resolve the
relative path. For more information see the z/OS V2R2 ISPF User's Guide Vol II.

YES|NO
For the WS keyword, if you specify YES, the EDIT service edits the host data
set or workstation file on the workstation, using the workstation editor
configured in the ISPF Workstation Tool Integration Program. For more

EDIT

Chapter 2. Description of the ISPF services 71

|
|
|
|
|
|
|
|

information see z/OS V2R2 ISPF User's Guide Vol II. If you specify NO, the
EDIT service edits the host data set or workstation file on the host using the
ISPF editor.

WRAP
Indicates how the editor should process host data that has been edited on the
workstation and now contains records longer than the logical record length of
the host data set. Specifying WRAP causes the editor to upload the data to the
host data set, wrapping any lines that are longer than the logical record length.
Leaving off the WRAP parameter or passing a blank value will cause the
editor to display a prompt panel to the user with these options:
v upload the data, wrapping any long lines
v have the editor create a temporary data set with a logical record length large

enough to handle the data, then upload the data to that temporary data set.

This parameter is only valid when WS(YES) is specified.

PRESERVE
When specified, the editor stores the original length of each record in
variable-length data sets and when a record is saved, the original record length
is used as the minimum length for the record. The editor always includes a
blank at the end of a line if the length of the record is zero or eight. Records
can be extended by adding nonblank data to the record or by using the
SAVE_LENGTH edit macro command. For more information, refer to the z/OS
V2R2 ISPF Edit and Edit Macros.

YES|NO
For the CHGWARN parameter, if you specify YES, the VIEW service gives a
warning when the first data change is made, indicating that data cannot be
saved in View. If you specify NO, no warning is given. This parameter is
ignored for EDIT.

parm-var
The name of an ISPF variable that contains parameters which are to be passed
to the initial macro specified by macro-name. The variable value must not
exceed 200 bytes in length. If no macro name is specified, parm-var must be
blank or not specified.

file-var
The name of an ISPF variable containing the path name for a z/OS UNIX
regular file or directory. If the path name is for a directory, a directory selection
list is displayed.

rec-len
A numeric value specifying the record length to be used when editing a z/OS
UNIX file. This parameter causes the records to be loaded into the editor as
fixed length and saved back in the file as fixed length.

ASCII|UTF8
This parameter can be specified when invoking EDIT to edit data encoded in
ASCII (or UTF-8) and the file is not tagged with a CCSID of 819 (or 1208).

When ASCII is specified or the file is tagged with CCSID 819, the editor
renders the ASCII data readable by converting it to the CCSID of the terminal.
Also, if set for a z/OS UNIX file, the editor breaks up the data into records
using the ASCII linefeed character (X'0A') and the ASCII carriage return
character (X'0D') as the record delimiter. For z/OS UNIX files, the linefeed and
carriage return characters are removed from the data loaded into the editor but

EDIT

72 z/OS V2R2 ISPF Services Guide

written back to the file when the data is saved. This option should not be used
when editing workstation files which are converted to EBCDIC when they are
loaded from the workstation.

When UTF8 is specified, or the file is tagged with CCSID 1208, the equivalent
actions happen, except for UTF-8 instead of ASCII.

tabname
The name of a user line command table to be provided by the service caller.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return codes
These return codes are possible:

0 Normal completion; data was saved.

4 Normal completion; data was not saved for one of these reasons.
v No data changes were made during the EDIT session. The CANCEL

command was used to exit EDIT. Browse was substituted for EDIT
because insufficient storage was available to read in the requested data.

10 Member or generation (if specified) not found.

12 YES was specified for the LOCK parameter.

14 Member, sequential data set, or z/OS UNIX file in use.

16 Either:
v No members matched the specified pattern.
v No members in the partitioned data set.

18 A VSAM data set was specified but the ISPF Configuration Table does not
allow VSAM processing.

20 Severe error; unable to continue.

Examples
See:
v “Example 1: Edit a PDS member”
v “Example 2: Edit a workstation file” on page 74
v “Example 3: Edit a z/OS UNIX file” on page 74

Example 1: Edit a PDS member
This example invokes the EDIT service for TELOUT, a member of the
ISPFPROJ.FTOUTPUT data set.

Command invocation:
ISPEXEC EDIT DATASET(’ISPFPROJ.FTOUTPUT(TELOUT)’) WS(YES)

OR

ISPEXEC LMINIT DATAID(EDT) DATASET(’ISPFPROJ.FTOUTPUT’)
ISPEXEC EDIT DATAID(&EDT) MEMBER(TELOUT) WS(YES)

EDIT

Chapter 2. Description of the ISPF services 73

||

Call invocation:
CALL ISPLINK (’EDIT’,’ISPFPROJ.FTOUTPUT(TELOUT)’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,

’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’YES’);
OR

Set the program variable BUFFER to contain:
BUFFER = ’EDIT DATASET(’ISPFPROJ.FTOUTPUT(TELOUT)’’) WS(YES)’;

Set the program variable BUFFLN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFFLN, BUFFER);

Example 2: Edit a workstation file
This example invokes the EDIT service for a workstation file, c:\config.sys, using
the ISPF editor on the host.

Command invocation: Set the command variable WSFNNAME to contain:
WSFNNAME=’c:\config.sys’
ISPEXEC EDIT WSFN(WSFNNAME) WS(NO)

Call invocation: Set the program variable to contain:
WSFNNAME=’c:\config.sys’;
CALL ISPLINK(’EDIT’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,

’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ WFSNNAME’,’NO’);

OR

Set the program variable WSFNNAME to contain:
WSFNNAME=’c:\config.sys’;

Set the program variable BUFFER to contain:
BUFFER=’EDIT WSFN(WSFNNAME) WS(NO)’;

Set the program variable BUFFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC(BUFFLEN,BUFFER);

Example 3: Edit a z/OS UNIX file
This example invokes the EDIT service for z/OS UNIX file /u/user1/filea.

Command invocation:
FILEVAR=’/u/user1/filea’
ISPEXEC EDIT FILE(FILEVAR)

Call invocation:
FILEVAR=’/u/user1/filea’;
CALL ISPLINK(’EDIT’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,

’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’FILEVAR ’);

EDREC—specify edit recovery handling
The EDREC service initializes an edit recovery table, determines whether recovery
is pending, and takes the action specified by the first argument.

Note: Dialogs that invoke the EDIT service should invoke the EDREC service first
to start edit recovery, because the EDIT service does not perform edit recovery.

EDIT

74 z/OS V2R2 ISPF Services Guide

When you invoke the EDREC service, EDREC displays a special panel. Using this
panel you can recover data, cancel recovery, defer recovery until a later time, or
enter the END command to return to the next sequential command in your
command invocation or to return to the next sequential instruction in your
program.

The EDREC service attempts to use the panel that you specified in the EDIT
service from which it is recovering. Make sure that this panel is available to the
EDREC service. It must be in a library allocated to ISPPLIB or available through a
LIBDEF.

Note: You can use the ZEDUSER variable to save LIBDEF information or the panel
name when you invoke EDIT. This is different from edit recovery entered from
option 2, because option 2 always uses its default panel.

Command invocation format

�� ISPEXEC EDREC INIT
CMD(command-name)

QUERY
PROCESS

PASSWORD(pswd-value) DATAID(data-id)
CANCEL
DEFER

��

Call invocation format

�� CALL ISPLINK ('EDREC���' �

� ,'INIT ' , command-name
'�'

,'QUERY '
,'PROCESS�' , pswd-value , data-id

'�' '�'
,'CANCEL��'
,'DEFER���'

); ��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
INIT

Initializes an edit recovery table in your profile library if one does not already
exist for the current application. The edit recovery table is saved in the data set
allocated to ddname ISPPROF in member xxxxEDRT, where xxxx is the ISPF
application ID.

command-name
A CLIST or REXX exec that starts the table. If you omit this parameter, the
INIT option invokes an ISPF-supplied CLIST named ISREDRTI. ISREDRTI

EDREC

Chapter 2. Description of the ISPF services 75

creates an eight-row edit recovery table, permitting eight levels of concurrent
Edit sessions with recovery active. The Edit sessions can result from recursion
or split-screen usage.

If you specify a command with the INIT option, the command should be
patterned after ISREDRTI. It can create a different number of rows or use a
different naming convention for the backup data sets, or specify “keep” instead
of “delete” as the backup data set disposition. The format of the edit recovery
table must be the same as that specified in ISREDRTI.

QUERY
Causes EDREC to search the edit recovery table for a pending recovery. When
the QUERY option is specified, EDREC scans the edit recovery table for an
entry containing a recovery pending condition. If the return code is 4,
indicating an entry was found, the dialog must call EDREC with the PROCESS,
CANCEL, or DEFER option.

EDREC QUERY is usually used in a loop, since there can be more than one
pending recovery. Multiple recoveries can result from recursion or from
split-screen usage of the dialog. Each subsequent call to EDREC with the
QUERY option scans the table starting at the entry after the last one that was
found. A typical loop, written in pseudo-code (showing the parameters
themselves instead of sample values), is as follows:
SET DONE = NO
DO WHILE &DONE = NO

ISPEXEC EDREC QUERY
IF &LASTCC = 4 THEN -

ISPEXEC EDREC PROCESS
ELSE -

SET DONE = YES
END

As the preceding example shows, EDREC QUERY must be used before each
invocation of any of these EDREC functions: PROCESS, CANCEL, or DEFER.

The variables shown are stored in the dialog function pool when EDREC is
called with the QUERY option and the return code is 4, indicating that
recovery is pending.

ZEDBDSN
Backup data set name.

ZEDTDSN
Target data set name.

ZEDTMEM
Target member name, if applicable.

ZEDTVOL
Volume serial of target data set, if a volume serial was specified on
invocation of the EDIT service.

ZEDROW
Row number of entry in edit recovery table.

The dialog can check the preceding variables and use them to display
information to the user. If EDREC QUERY shows that recovery is not pending,
the previous variables are not meaningful.

ZEDUSER is an extension variable in the Edit Recovery Table that is provided
to contain user data. Whatever data is in dialog variable ZEDUSER in the
shared pool is saved to the ZEDUSER variable in the edit recovery table when

EDREC

76 z/OS V2R2 ISPF Services Guide

the recovery data set is initialized. This is done if RECOVERY is ON when
entering Edit or after using the SAVE command.

When EDREC is called with the QUERY option and the return code is 4,
indicating that recovery is pending, or if ISPF option 2 edit recovery takes
place, the data is read out of ZEDUSER in the table and returned to ZEDUSER
in the shared and function pools. If recovery is not pending, this variable is not
meaningful. The extension variable ZEDMODE indicates whether this is an
edit session or a view session that is to be recovered.

PROCESS
Causes edit recovery to proceed.

pswd-value
The MVS password of the target data set. This parameter is valid only with the
PROCESS option.

data-id
The data ID of the data set that will contain the recovered data. The recovered
data should be saved in a data set other than the data set that was being
edited when the system failure occurred. If you omit this parameter, EDREC
attempts to save the recovered data in the original data set.

Before using the data ID parameter, the dialog must first invoke the LMINIT
service to specify the target data set and then pass the data ID to the EDREC
service. This procedure can also control the allocation of the target data set for
recovery, even if it is not the original data set being edited. You must use this
procedure if you originally specified the data set being edited to the EDIT
service using the ddname interface.

CANCEL
Cancels edit recovery. The backup data set is erased and the corresponding
entry in the edit recovery table is freed.

DEFER
Defers edit recovery. Recovery is canceled, but the backup data set is saved so
that recovery can be processed in another Edit session.

Attention:

Use this parameter carefully. It can cause your original data set to be written
over in the next Edit session.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return codes
These return codes are possible:

0 Normal return.
INIT Edit recovery table was successfully created.
QUERY

Recovery is not pending.
PROCESS

Recovery was completed and the data was saved.

EDREC

Chapter 2. Description of the ISPF services 77

4 Normal return.
INIT Edit recovery table already exists for current application.
QUERY

Entry found in edit recovery table; recovery is pending.
PROCESS

Recovery was completed, but user did not save data.

20 Severe error; unable to continue.

Examples
Here are some examples of the EDREC service:

Example 1:
This example invokes the EDREC service for INIT to create an edit recovery table
if one does not exist.

Command invocation:
ISPEXEC EDREC INIT

Call invocation:
CALL ISPLINK (’EDREC ’, ’INIT ’);
OR

Set the program variable BUFFER to contain:
BUFFER = ’EDREC INIT’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

Example 2:
This REXX exec invokes the LMINIT service in preparation for the EDIT service
call. Then, it invokes the EDREC service to create an edit recovery table if one does
not exist. The exec then uses the QUERY parameter of the EDREC service to see if
edit recovery is pending. If it is, then it displays the edit recovery panel,
ISREDM02, and process the response. If recovery is requested from ISREDM02, the
EDREC service is called with the PROCESS parameter; otherwise, the EDREC
service is called with the DEFER parameter. The EDREC QUERY is invoked from
within a loop so that all pending edit recovery sessions can be processed. After
edit recovery processing is complete, the EDIT service is called, followed by an
LMFREE to free the data ID set by the LMINIT service.
/* REXX exec to use edit recovery prior to edit */
address ispexec
’lminit dataid(data1) dataset(private.source)’
if rc = 0 then

do
’edrec init’ /* create recovery table */
do until edrc/=4 | edcon = 0

’edrec query’ /* check for recovery ds */
edrc = rc
if edrc=4 then

do
z1=zedtdsn /* set up panel variable */

/* and show recovery panel*
’display panel(isredm02) cursor(zcmd)’
if rc = 0 & substr(zedcmd,1,1)=’ ’ then

do
’edrec process’ /* process recovery */
edcon = 0 /* and end loop */

EDREC

78 z/OS V2R2 ISPF Services Guide

end
else if rc = 0 & substr(zedcmd,1,1)=’c’ then

’edrec cancel’
else

’edrec defer’
end

end
’edit dataid(’data1’) member(sample)’
’lmfree dataid(’data1’)’

end

FILESTAT—statistics for a file
Use the FILESTAT service to determine statistics about a file on the connected
workstation. FILESTAT returns information that the file exists, the longest length
record in the file, and the date and time on the file.

Note: Be aware that when the FILESTAT service is issued for certain reserved or
restricted operating system file names, your workstation operating system or host
system can cease to function, or "hang". See your workstation operating system
documentation to note reserved or restricted file names.

Command invocation format

�� ISPEXEC FILESTAT FILE(var-name)
LRECL(var-name),DATE(var-name)

��

Call invocation format

�� CALL ISPLINK ('FILESTAT' ,var-name , var-name,var-name)
'�'

��

Parameters
FILE var-name

The variable name containing the workstation file for which you want
statistics. If no parameters other than the file name are specified, the function
will verify that the file exists with a return code of 0.

LRECL var-name
The variable name in which ISPF returns the longest record length of the file
you specify. The variable is returned in character format and has a length of 8.

DATE var-name
The variable name in which ISPF returns the date and time that the specified
workstation file was last changed. The date and time are returned in character
format, and have a length of 19. The date format is 'yyyy/mm/dd hh:mm:ss'.

Return codes
These return codes are possible:

0 Workstation file exists.

4 Workstation file does not exist.

8 Error in variable specification.

EDREC

Chapter 2. Description of the ISPF services 79

10 No workstation connection exists.

12 Workstation device is not ready.

20 Severe error in FILESTAT service.

Example
This exec verifies the existence of LANGSEL.DES in the D:\DESIGN directory on
the workstation. The LRECL of the workstation file is saved in variable LVAR and
the date is saved in variable DVAR.
/* REXX */
fivar = ’d:\design\langsel.des’
address ispexec ’filestat file(fivar) lrecl(lvar) date(dvar)’

FILEXFER—upload or download file
The FILEXFER service is used to upload files from the workstation or download
files to the workstation. It supports the upload and download of z/OS UNIX files.

Note: Be aware that when the FILEXFER service is issued for certain reserved or
restricted operating system file names, your workstation operating system or host
system can cease to function, or "hang". See your workstation operating system
documentation to note reserved or restricted file names.

You use the HOST(var-name) and WS(var-name) keywords to specify the host data
set name (and member if it is a PDS) and the workstation file name involved in
the file transfer. For each, a variable is specified that contains the host or
workstation identifier. The TO(HOST|WS) keyword determines the direction of the
file transfer. TO(HOST) specifies that the file named in the WS(var-name) keyword
should be uploaded to the data set (and member) named in the HOST(var-name)
keyword. TO(WS) specifies that the data set (and member) named in the
HOST(var-name) keyword should be downloaded to the file named in the
WS(var-name) keyword.

The host data set specification should follow normal TSO naming conventions. If
the host data set you specify is unquoted, the user's prefix is used as the high-level
qualifier of the data set.

The workstation file name must include the drive and directory information. The
host data set name should include a member name when applicable. ISPF variables
are used for the file names. Use the ISPF VPUT service to put the variables in the
variable pool before starting this command.

Command invocation format

�� ISPEXEC FILEXFER HOST(var-name) WS(var-name) TO(HOST)
WS

�

�
VOLUME(volume)

TEXT
BINARY

STATS
NOSTATS

NO
CHKDATE (YES)

�

FILESTAT

80 z/OS V2R2 ISPF Services Guide

�
NO

SETDATE (YES)
SCLM

NO
MAKEPATH (YES)

��

Call invocation format

�� CALL ISPLINK ('FILEXFER' ,host_var,ws_var, '�'
'HOST����'
'NO������'

, �

� volume
'�'

,
'TEXT����'
'�'
'BINARY��'

,
'STATS���'
'�'
'NOSTATS�'

,
'NO������'
'�'
'YES�����'

, �

�
'NO������'
'�'
'YES�����'
'SCLM����'

'�'
'YES�����'
'NO������'

) ��

Parameters
HOST var-name

An ISPF variable that contains the name of the host file that is to be
transferred. The name can be a path name for a z/OS UNIX regular file.

WS var-name
An ISPF variable that contains the name of the workstation file that is to be
transferred.

TO (host or ws)
An ISPF variable that tells where the file will be created upon the completion
of the transfer.
v if TO HOST is specified:

– in binary mode—data sets with fixed-length records are padded with null
characters if needed to fill the final record of the data set. Data sets with
variable-length records are not padded.

– in text mode—for Windows systems, a Carriage-Return/Line-Feed
combination indicates the end of a line. An end-of-file character that is the
last character in the file is not transmitted to the host. End-of-file
characters at other locations in the file are transmitted to the host along
with the data following the end-of-file character.
For AIX® and HP-UX, a Line-Feed character is considered the end of a
line.
If a line is longer than the record length of the data set the line is split
into as many records as are needed to hold the line.
For data sets with fixed-length records lines are padded with blanks to
reach the record length.

v if TO WS is specified:
– in binary mode—all data from each record in the host data set is

concatenated to form the workstation file.
– in text mode—blanks after the last nonblank character are trimmed form

each record. Records consisting entirely of blanks are sent as a line with a

FILEXFER

Chapter 2. Description of the ISPF services 81

single blank character. Zero-length records from a data set with
variable-length records are not transferred to the workstation, and can
cause an error condition to occur.

If a data set containing end-of-line characters is transferred to the workstation
and back to the host, the end-of-line characters are removed and the line is
split at the location of the end-of-line characters. For Windows systems, an
end-of-file character at the end of the data set is also removed when the data
set is transferred to the workstation and back to the host.

volume
An ISPF volume number for the location of the 'TO' file. Used only when
working with uncataloged data sets.

BINARY
Specifies that no ASCII/EBCDIC character translation should take place.

TEXT
Specifies that ASCII/EBCDIC translation should take place.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

STATS
Specifies that ISPF statistics will be generated or maintained by incrementing
the mod level and setting the last changed time to the time when the member
is uploaded. This is the default.

NOSTATS
Specifies that ISPF statistics will not be generated or maintained when the
member is uploaded.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

CHKDATE
YES On download, check the date and time of the source file and the target

file. If they are different, perform the file transfer and update the date
and time of the target file to match those of the source file. If they are
the same, do not perform the file transfer, and set the return code to 2.

If the source file you are downloading from the host to the PC does
not have an entry in the date and time statistics, the current date is set
on the host file at the time of the file transfer.

NO Transfer the files regardless of dates and times.

SETDATE
YES On upload, set the date and time of the host file to be the same as the

workstation file.
SCLM On upload, set the date and time of the host file to be the same as the

workstation file. In addition to this, set the SCLM bit on.
NO On upload, use the system data and time for the host files.

MAKEPATH
YES On transfer to the workstation, create the necessary subdirectories to

store the file transferred. This parameter is ignored on a transfer to the
host.

NO On transfer to the workstation, do not create any subdirectories to
store the file transferred. This parameter is ignored on a transfer to the
host. NO is the default for this parameter.

FILEXFER

82 z/OS V2R2 ISPF Services Guide

Return codes
These return codes are possible:

2 Source file and target file have the same date and time.

4 LMSTAT failed.

6 LMINIT failed.

7 Error in variable specification.

8 "TO" direction not valid.

9 Host name is too long.

10 No workstation connection exists.

11 Return code 1 from DTTRANSFER. Host data set had null object handle.

12 Return code 2 from DTTRANSFER. Workstation file had null object handle.

13 Return code 3 from DTTRANSFER. Host data set could not be opened.

14 Return code 4 from DTTRANSFER. Workstation file could not be opened.

15 Return code 5 from DTTRANSFER. Error reading host data set.

16 Return code 6 from DTTRANSFER. Error reading workstation file.

17 Return code 7 from DTTRANSFER. Error writing host data set.

18 Return code 8 from DTTRANSFER. Error writing workstation file.

19 Return code 9 from DTTRANSFER. Error closing host data set.

20 Severe error in transfer service.

21 Return code 10 from DTTRANSFER. Error closing workstation file.

22 Return code 11 from DTTRANSFER. User refused file access.

23 Data set or member in use.

Example
This exec demonstrates a file transfer from the host to the workstation:
/* REXX */
VAR1 = ’MYMVS.FILE(STUFF)’
VAR2 = ’E:\MYOS2.FILE’
ADDRESS ISPEXEC ’VPUT (VAR1 VAR2)’
ADDRESS ISPEXEC ’FILEXFER HOST(VAR1) WS(VAR2) TO(WS) TEXT’

FTCLOSE—end file tailoring
The FTCLOSE service is used to terminate the file tailoring process and to indicate
the final disposition of the file tailoring output.

A member-name parameter should be specified if the output is a library. The file
tailoring output is given the specified member name. No error condition results if
the member-name parameter is not specified and the output is not stored in the
library.

If the member-name parameter is specified and the output is sequential, a severe
error results.

FILEXFER

Chapter 2. Description of the ISPF services 83

The library parameter should be specified if a library other than that represented
by the ISPFILE or LIBDEF definition is to be used. The library parameter is
ignored if the “TEMP” option (temporary file) is specified on the FTOPEN service
or if the ISPFILE definition specifies a sequential data set. A severe error occurs if
file tailoring attempts to use a data set that is not a library.

The NOREPL parameter specifies that an existing member in the file tailoring
output library is not to be overlaid by the current FTCLOSE service. If a member
of the same name already exists, the FTCLOSE service request is terminated with a
return code of 4 and the original member remains unaltered.

Command invocation format

�� ISPEXEC FTCLOSE
NAME(member-name) LIBRARY(library) NOREPL

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('FTCLOSE�' , member-name
'�'

, library
'�'

�

� , 'NOREPL��');
'�'

��

Parameters
member-name

Specifies the name of the member in the output library that is to contain the
file tailoring output.

library
Specifies the name of a DD statement or lib-type on the LIBDEF service request
that defines the output library in which the member-name exists. If specified, a
generic (non-ISPF) ddname must be used. If this parameter is omitted, the
default is ISPFILE.

NOREPL
Specifies that FTCLOSE is not to overlay an existing member in the output
library.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

FTCLOSE

84 z/OS V2R2 ISPF Services Guide

0 Normal completion.

4 Member already exists in the output library and NOREPL was specified.
The original member is unchanged.

8 File not open. FTOPEN was not used before FTCLOSE.

12 Output file in use. ENQ failed.

16 Skeleton library or output file not allocated.

20 Severe error.

Example
End the file tailoring process and store the result of the processing in the file
tailoring output library in member TELOUT.
ISPEXEC FTCLOSE NAME(TELOUT)

Set the program variable BUFFER to contain:
FTCLOSE NAME(TELOUT)

Set program variable BUFLEN to the length of the variable BUFFER. Enter the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately:
CALL ISPLINK (’FTCLOSE ’,’TELOUT ’);

FTERASE—erase file tailoring output
The FTERASE service erases a member of a file tailoring output library.

A severe error occurs if a specified library or the default, ISPFILE, is a sequential
file.

Command invocation format

�� ISPEXEC FTERASE member-name
LIBRARY(library)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('FTERASE�' , member-name , library);
'�'

��

Parameters
member-name

Specifies the name of the member that is to be deleted from the output library.

FTCLOSE

Chapter 2. Description of the ISPF services 85

library
Specifies the name of a DD statement or lib-type on the LIBDEF service request
that defines the output library that holds the member to be deleted. ISPFILE is
the default if this parameter is omitted.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

8 File does not exist.

12 Output file in use; ENQ failed.

16 Alternate output library not allocated.

20 Severe error.

Example
Erase member TELOUT in the file tailoring output library.
ISPEXEC FTERASE TELOUT

Set the program variable BUFFER to contain:
FTERASE TELOUT

Set program variable BUFLEN to the length of the variable BUFFER. Enter the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’FTERASE ’,’TELOUT ’);

FTINCL—include a skeleton
The FTINCL service specifies the skeleton that is to be used to produce the file
tailoring output. If an FTOPEN service has not already been issued, the FTINCL
service performs the equivalent of an FTOPEN, without the TEMP keyword, before
processing the specified skeleton.

Command invocation format

�� ISPEXEC FTINCL skel-name
NOFT EXT

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

FTERASE

86 z/OS V2R2 ISPF Services Guide

or

�� CALL ISPLINK ('FTINCL��' , skel-name , 'NOFT����'
'�'

�

� , 'EXT�����'
'�'

); ��

Parameters
skel-name

Specifies the name of the skeleton.

NOFT
Specifies that no file tailoring is to be performed on the skeleton: the entire
skeleton is to be copied to the output file exactly as is with no variable
substitution or interpretation of control records.

EXT
Enables support for built-in functions in all skeletons processed by the FTINCL
call, unless the NOEXT parameter is specifically included on the)IM control
statement when embedding a lower level skeleton.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

8 Skeleton does not exist.

12 Skeleton in use; ENQ failed.

16 Data truncation occurred or skeleton library or output file not allocated.

20 Severe error.

Example
Perform file tailoring using the file tailoring skeleton named TELSKEL, a member
in the file tailoring skeleton library, to control processing.
ISPEXEC FTINCL TELSKEL

or Set the program variable BUFFER to contain:
FTINCL TELSKEL

Set program variable BUFLEN to the length of the variable BUFFER. Enter the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately:
CALL ISPLINK (’FTINCL ’,’TELSKEL ’);

FTINCL

Chapter 2. Description of the ISPF services 87

FTOPEN—begin file tailoring
The FTOPEN service, which begins the file tailoring process, allows skeleton files
to be accessed from the skeleton library specified by ddname ISPSLIB. The skeleton
library must be allocated before invoking ISPF. ISPSLIB can specify a concatenation
of files.

If output from file tailoring is not to be placed in a temporary file, the desired
output file must be allocated to the ddname ISPFILE before invoking this service.
ISPFILE can designate either a library or a sequential file. The skeleton files can
contain variable-length records, with a maximum record length of 255.

The same rules apply for DBCS-related variable substitution in file tailoring as
those described for file skeleton definition.

Command invocation format

�� ISPEXEC FTOPEN
TEMP

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('FTOPEN��' , 'TEMP����'
'�'

); ��

Parameters
TEMP

Specifies that the output of the file tailoring process should be placed in a
temporary sequential file. Output is fixed-length 80-byte records. The file is
automatically allocated by ISPF. Its name is available in system variable
ZTEMPF.

If this parameter is omitted, the output is placed in the library or sequential
file designated by ddname ISPFILE.

ZTEMPF contains a fully qualified data set name. ZTEMPN contains the
ddname. Generated JCL in this file can be substituted for background
execution by using the TSO command:
SUBMIT ’&ZTEMPF’

Before issuing the SUBMIT command, the VGET service should be invoked to
initialize the variable ZTEMPF, and the FTCLOSE service must be invoked to
ensure that all of the file tailoring output is included.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

FTOPEN

88 z/OS V2R2 ISPF Services Guide

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

8 File tailoring already in progress.

16 Skeleton library or output file not allocated.

12 Output file in use; ENQ failed.

20 Severe error.

Example
Prepare for access (open) both the file tailoring skeleton and file tailoring output
libraries.
ISPEXEC FTOPEN

Set the program variable BUFFER to contain:
FTOPEN

or Set program variable BUFLEN to the length of the variable BUFFER. Enter the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately:
CALL ISPLINK (’FTOPEN ’);

GETMSG—get a message
The GETMSG service obtains a message and related information from the message
file. The short and long message text, help panel name, and alarm indicator can be
obtained for a specified message-id. Values for all variables defined in the message
are substituted when the message text is retrieved. If the desired message
information is not present for the short message text, long message text, or help
panel name, the corresponding variable name specified in the GETMSG service
request is set to a null value. If the alarm indicator is not present on the message, a
value of “NO” is returned in the alarm-name variable.

A message type of critical (.TYPE=CRITICAL) on the message definition statement
overrides the values specified for the alarm and window keywords. For critical
messages, the dialog manager sounds the alarm and places the message in a
message pop-up window that requires a response. If GETMSG asks for the
.ALARM value to be returned, the value returned will be YES, reflecting the fact
that .TYPE=CRITICAL has forced that value. This is the case if .ALARM was not
specified (which would normally default to NO) or if .ALARM=NO is actually
defined for the message.

All the parameters except the message-id are optional. If the optional parameters
are omitted, GETMSG simply validates the existence of the specified message.

FTOPEN

Chapter 2. Description of the ISPF services 89

Command invocation format

�� ISPEXEC GETMSG MSG(message-id)
SHORTMSG(short-message-name)

�

�
LONGMSG(long-message-name) ALARM(alarm-name) HELP(help-name)

�

�
TYPE(type-name) WINDOW(window-name) CCSID(ccsid-name)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('GETMSG��' ,message-id , short-message-name
'�'

�

� , long-message-name
'�'

, alarm-name
'�'

, help-name
'�'

, type-name
'�'

�

� , window-name
'�'

, ccsid-name);
'�'

��

Parameters
message-id

Specifies the identification of the message for which information is to be
retrieved.

short-message-name
Specifies the name of a variable into which the short message text, if any, is to
be stored.

long-message-name
Specifies the name of a variable into which the long message text is to be
stored.

alarm-name
Specifies the name of a variable into which the alarm indicator of “NO” or
“YES” is to be stored.

help-name
Specifies the name of a variable into which the help panel name, if any, is to be
stored.

type-name
Specifies the name of the variable into which the message type, if any, (notify,
warning or critical) is to be stored.

window-type
Specifies the name of the variable into which the window type, if any (RESP or
NORESP), is to be stored.

GETMSG

90 z/OS V2R2 ISPF Services Guide

ccsid-name
Specifies the name of the variable into which the CCSID, if any, is to be stored.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

12 The specified message could not be found.

20 Severe error.

Example
For the message named ABCS102, return the text of the long message in variable
ERRMSG and the help panel name in variable HPANEL.
ISPEXEC GETMSG MSG(ABCS102) LONGMSG(ERRMSG) HELP(HPANEL)

or Set the program variable BUFFER to contain:
GETMSG MSG(ABCS102) LONGMSG(ERRMSG) HELP(HPANEL)

Set program variable BUFLEN to the length of the variable BUFFER. Enter the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’GETMSG ’,’ABCS102 ’,’ ’,’ERRMSG ’,

’ ’,’HPANEL ’);

GRERROR—graphics error block service
This service is used only with CALL ISPLINK or CALL ISPLNK calls.

The GRERROR service returns to the caller the address of the GDDM error record
and the address of the GDDM call format descriptor module.

This service allows the dialog developer to examine the error record provided by
GDDM from GDDM function calls. Since the dialog uses the same application
anchor block (AAB) as ISPF and cannot use the FSEXIT function, this information
would otherwise be unavailable. See the GDDM Base Application Programming Guide
for information about the GDDM error record and the GDDM Base Application
Programming Reference for information about the call format descriptor module.

Command invocation format
ISPEXEC *This service does not apply to

command or APL2 procedures*

GETMSG

Chapter 2. Description of the ISPF services 91

Call invocation format
CALL ISPEXEC *This service cannot be used

with this interface*

or
CALL ISPLINK (’GRERROR ’, error-record-pointer,

call-format-descriptor-module-pointer);

�� CALL ISPLINK ('GRERROR�' , error-record-pointer, �

� call-format-descriptor-module-pointer); ��

Parameters
error-record-pointer

Specifies a 4-byte program variable where the address of the GDDM error
record is returned.

call-format-descriptor-module-pointer
Specifies a 4-byte program variable where the address of the GDDM call
format descriptor module is returned.

Return codes
These return codes are possible:

0 Normal completion

8 ISPF/GDDM interface is not established

20 Severe error.

GRINIT—graphics initialization
This service is available only with CALL ISPLINK or CALL ISPLNK calls.

The GRINIT service initializes the ISPF/GDDM interface and optionally requests
that ISPF define a panel's GRAPHIC area as a GDDM graphics field. This service
also replaces the FSINIT or SPINIT GDDM calls.

Graphic areas are not supported in GUI mode. However, you have some options if
you request that an ISPF/GDDM interface be initialized:
v If you specify a panel name in your GRINIT request, which indicates that you

intend to define a graphic area in the panel, you can choose one of these
options:
1. To display the panel with the graphic area in the host emulator session

Note: If you are in split screen mode, the graphic area panel cannot be
displayed on the host.

2. To display the panel without the graphic area on your workstation.
v If you issue a GRINIT request without specifying a panel name, you can choose

from these options:
1. To continue running you application until a graphic panel is encountered, at

which time you can choose one of the options provided for GRINIT calls that
do specify a panel name

2. To terminate the GDDM initialization, which returns a code of 20.

GRERROR

92 z/OS V2R2 ISPF Services Guide

If you have specified GUISCRD or GUISCRW values on the ISPSTART invocation
that are different than the actual host screen size, GDDM cannot be initialized and
the GRINIT service will end with a return code of 20.

GDDM or PGF functions are accessed by the dialog through the GDDM reentrant
or system programmer interfaces. These interfaces are described in the GDDM Base
Application Programming Reference.

The dialog must provide an 8-byte area, called an application anchor block (AAB),
which is on a fullword boundary, to the GRINIT call. This AAB identifies the
ISPF/GDDM instance and must be used in all GDDM calls made by the dialog.
Within the ISPF/GDDM instance, the dialog cannot perform any of these GDDM
calls:
ASREAD FSSHOR ISFLD MSPCRT MSQMOD PTNSEL WSCRT
FSSHOW ISQFLD MSPQRY MSQPOS PTSCRT WSDEL WSIO
FSENAB FSTERM ISXCTL MSPUT MSREAD PTSDEL WSMOD
FSEXIT GSREAD MSCPOS MSQADS PTNCRT PTSSEL WSSEL
FSINIT ISCTL MSDFLD MSQGRP PTNDEL PTSSPP WSSWP
FSRNIT ISESCA MSGET MSQMAP PTNMOD SPINIT

In addition, these GDDM calls, while permitted, can interfere with the
ISPF/GDDM session:
DSCLS DSDROP DSOPEN DSRNIT DSUSE DSCMF

If a dialog uses GDDM calls to put alphanumeric fields on a display, these fields
are displayed only if there are no fields in the body of the ISPF panel definition.
Other fields are not displayed. This means that alphanumeric fields can be
displayed by either ISPF or the dialog through the use of GDDM, but not by both.

In addition, when using GDDM to put alphanumeric fields on a display, it is the
dialog's responsibility to ensure that split-screen mode is not active before the
display of the panel and that split-screen mode is disabled during the display of
the panel.

Note:

1. Terminals running in partition mode or terminals running with multiple screen
widths, including the 3290 and the 3278 Mod 5, are not supported for graphics
interface mode.

2. TSO Session Manager is disabled while graphics interface mode is active.

Command invocation format
ISPEXEC *This service does not apply to

command or APL2 procedures*

Call invocation format

�� CALL ISPLINK ('GRINIT��' ,application-anchor-block , panel-name);
'�'

��

Parameters
application-anchor-block

Specifies the name of a variable containing an 8-byte application anchor block.
This storage area can be updated by ISPF.

GRINIT

Chapter 2. Description of the ISPF services 93

panel-name
Specifies the name of the panel containing the GRAPHIC area.

Return codes
These return codes are possible:

0 Normal completion.

8 The specified panel does not contain a GRAPHIC area.

12 The specified panel could not be found.

20 Severe error.

Example
Initialize the ISPF/GDDM interface and request that the graphic area in panel
OURLOGO be defined as a GDDM graphics field.
CALL ISPLINK (’GRINIT ’,ABC,’OURLOGO ’);

GRTERM—graphics termination service
This service is available only with CALL ISPLINK or CALL ISPLNK calls.

The GRTERM service indicates that the caller has completed all GDDM processing
and that GDDM can now be terminated.

If the user is running in split-screen mode and the other task has requested
GDDM, GDDM will still be used for displays.

Command invocation format
ISPEXEC *This service does not apply to

command or APL2 procedures*

Call invocation format
CALL ISPEXEC *This service cannot be used

with this interface*

or

�� CALL ISPLINK ('GRTERM��'); ��

Return codes
These return codes are possible:

0 Normal completion

20 Severe error.

LIBDEF—allocate application libraries
The LIBDEF service provides for the dynamic definition of application data sets,
thus allowing application data sets to be specified during an ISPF session. This
eliminates the need for allocate statements to define all application data sets before
invoking an ISPF session.

GRINIT

94 z/OS V2R2 ISPF Services Guide

The LIBDEF service can be used to define these application-level libraries:
v Panels
v Messages
v Tables
v Skeletons
v File tailoring output
v User link libraries
v Images

The same ddnames used to define ISPF libraries are used to define data sets on the
LIBDEF service requests. An application-level definition for ISPPROF, the ISPF
profile library, is not permitted, because ISPPROF contains user-related data.

An application invoked from ISPF issues LIBDEF requests to define the
application-level libraries that will be in effect while the application is running.
This feature might improve the search time for libraries that are defined at the
application level, but it adds an extra search level for entities that exist in the ISPF
product library definitions.

The LIBDEF service also allows users to define a generic library type. The generic
library extends the use of the LIBRARY parameter on DM component services such
as TBCLOSE, TBOPEN, or TBSAVE, by allowing the user to specify the name of a
LIBDEF generic library.

Note: The QLIBDEF service allows an ISPF dialog to obtain the current LIBDEF
definition information. This information can be saved by the dialog and used later
to restore any LIBDEF definitions that may have been overlaid. For each LIBDEF
lib-type, the ID parameter and the type of ID is returned. For more information,
see “QLIBDEF—query LIBDEF definition information” on page 206.

The currently allocated ISPF libraries must still be defined before invoking ISPF
and cannot be changed while in an ISPF session. Within a given application, when
a LIBDEF has been defined with either the DATASET (or EXCLDATA) or LIBRARY
(or EXCLLIBR) keyword, and another LIBDEF request is issued with either
keyword for the same lib-type, the second definition takes precedence over the
first. If the user specifies the COND keyword on the service call, the
application-level library is defined only if there is no application-level library
already defined for the specified type (for example, messages or panels).

The absence of the DATASET (or EXCLDATA) or LIBRARY (or EXCLLIBR)
keyword, or the presence of either keyword with a null data set list, indicates that
an application-level definition for the specified type is removed, if one exists.

When the DATASET keyword is specified with the LIBDEF service, it causes the
newly defined application-level library to be searched before the allocated ISPF
library for a particular type. To allow the user to continue to define user-level
libraries that are to be searched first, these new ddnames must be specified in
ALLOCATE commands before ISPF is invoked:
ISPMUSR

User message library
ISPPUSR

User panel library
ISPSUSR

User skeleton library
ISPTUSR

User table library

LIBDEF

Chapter 2. Description of the ISPF services 95

ISPTABU
User table output library

ISPFILU
User file tailoring output library

ISPLUSR
User link library

ISPIUSR
User image library.

The LIBDEF service only affects the ISPF DDs. To alter the SYSPROC concatenation
sequence, use the TSO/E ALTLIB command.

Note: When the user ddname for the library type is defined, data set names
allocated to it are treated as being concatenated ahead of those specified on the
LIBDEF service request. The rules governing concatenation of data sets apply.

Only the first 15 data sets allocated to these user ddnames will be searched by
ISPF before the LIBDEF application-level library.

In the case of ISPLLIB, EXCLDATA can be used instead of DATASET, and
EXCLLIBR instead of LIBRARY exclusively. Using one of these keywords
(EXCLDATA or EXCLLIBR) indicates that when searching for the LOAD module,
ISPF is only considering the application-level libraries defined by the LIBDEF
service. That is, user libraries and ISPF base libraries are not used when
EXCLDATA or EXCLLIBR is specified.

The DATASET (or EXCLDATA) and LIBRARY (or EXCLLIBR) keywords are
mutually exclusive.

Application data element search order
When two or more input libraries are to be searched for an item, the search begins
with the first library in a list and continues through the list until the item is found.
For example, if the item searched for is of type “Panels” and a “LIBDEF with
DATASET” service call is in effect, the input libraries (ISPPUSR, the LIBDEF
defined library, and ISPPLIB) are searched consecutively in the order shown. The
search stops when the item is found or when the last library has been searched.

The search of two or more output libraries proceeds in the same way, except that
the first definition found is used as the repository for the output.

If no application-level libraries have been defined, the current set of allocated ISPF
libraries is searched. If an application-level library is defined, it is searched before
the allocated ISPF libraries.

Table 6 defines the search sequence for all item types.

Table 6. Search Sequence for Libraries

No LIBDEF
LIBDEF with
DATASET

LIBDEF with
LIBRARY

LIBDEF with
EXCLDATA

LIBDEF with
EXCLLIBR

Panels ISPPLIB ISPPUSR
LIBDEF
ISPPLIB

LIBDEF
ISPPLIB

Not valid Not valid

LIBDEF

96 z/OS V2R2 ISPF Services Guide

Table 6. Search Sequence for Libraries (continued)

No LIBDEF
LIBDEF with
DATASET

LIBDEF with
LIBRARY

LIBDEF with
EXCLDATA

LIBDEF with
EXCLLIBR

Messages ISPMLIB ISPMUSR
LIBDEF
ISPMLIB

LIBDEF
ISPMLIB

Not valid Not valid

Table Input ISPTLIB ISPTUSR
LIBDEF
ISPTLIB

LIBDEF
ISPTLIB

Not valid Not valid

Skeleton ISPSLIB ISPSUSR
LIBDEF
ISPSLIB

LIBDEF
ISPSLIB

Not valid Not valid

Images ISPILIB ISPIUSR
LIBDEF
ISPILIB

LIBDEF
ISPILIB

Not valid Not valid

Linklib (See note
following this
table)

Job Pack Area
ISPLLIB
STEPLIB
Link Pack Area
LINKLIB

Job Pack Area
ISPLUSR
LIBDEF
ISPLLIB
STEPLIB
Link Pack Area
LINKLIB

Job Pack Area
LIBDEF
ISPLLIB
STEPLIB
Link Pack Area
LINKLIB

Job Pack Area
LIBDEF
Link Pack Area
LINKLIB

Job Pack Area
LIBDEF
Link Pack Area
LINKLIB

Table Output ISPTABL ISPTABU
LIBDEF

LIBDEF Not valid Not valid

File Tailoring
Output

ISPFILE ISPFILU
LIBDEF

LIBDEF Not valid Not valid

Table Services
(Input) with
LIBRARY
Parameter

Allocated Library (Unchanged) LIBDEF Not valid Not valid

Table Services
(Output) with
LIBRARY
Parameter

Allocated Library LIBDEF (Unchanged) Not valid Not valid

File Tailoring
Services (Output)
with LIBRARY
Parameter

Allocated Library LIBDEF (Unchanged) Not valid Not valid

Note:

1. If a program in Linklib is to be attached as a command processor (that is, by
using the SELECT CMD parameter) and the command is not defined in the
TSO command characteristics table (ISPTCM), the search sequence illustrated
here does not apply. See z/OS V2R2 ISPF Planning and Customizing for
information about customizing ISPTCM for the correct search order.

LIBDEF

Chapter 2. Description of the ISPF services 97

2. When using a SELECT with NEWAPPL, you must include PASSLIB to use the
LIBDEFs you defined. For more details, see the description of the NEWAPPL
parameter under “SELECT—select a panel or function” on page 211.

3. The image library with the associated ddname ISPILIB is not a required ISPF
library. If you plan to use ISPF's image support in GUI mode, you must allocate
the image input data set to ddname ISPILIB before using the images or before
invoking the LIBDEF service with libtype ISPILIB.

Command invocation format

�� ISPEXEC LIBDEF lib-type
DATASET
EXCLDATA
LIBRARY
EXCLLIBR

ID()
dataset-list
libname

�

�
COND
UNCOND
STACK
STKADD

��

Note: The default option is set in the ISPF configuration table keyword
DEFAULT_LIBDEF_PROCESSING_OPTION. By default this keyword is set to
UNCOND.

Call invocation format

�� CALL ISPLINK ('LIBDEF��' , lib-type �

� , '�'
'DATASET�'
'EXCLDATA'
'LIBRARY�'
'EXCLLIBR' , '�'

dataset-list
libname

, '�');
'COND����'
'UNCOND��'
'STACK���'
'STKADD��'

��

Note: The default option is set in the ISPF configuration table keyword
DEFAULT_LIBDEF_PROCESSING_OPTION. By default this keyword is set to
UNCOND.

Parameters
lib-type

Indicates which type of ISPF ddname application-level library definition is
being made. The value specified for lib-type must be padded with blanks, if
needed, to make the total length 8 characters. For generic libraries it is the
ddname as specified by the LIBRARY parameter of the corresponding table or
file tailoring service.

Users can specify these types of libraries:
ISPMLIB

Message library

LIBDEF

98 z/OS V2R2 ISPF Services Guide

ISPPLIB
Panel library

ISPSLIB
Skeleton library

ISPTLIB
Table input library

ISPTABL
Table output library

ISPFILE
File tailoring output file

ISPLLIB
Load module library

xxxxxxxx
Generic library

ISPILIB
Image library

ISPF ddname libraries can only be used for their intended purpose. Generic
libraries can be used for table input, table output, or file tailoring output.

DATASET
The DATASET keyword indicates that ID specifies a list of cataloged data sets
that contain the application's dialog elements. For table and file tailoring
output libraries, only one data set can be specified. For other libraries, a
maximum of 15 names can be supplied in the data set list. All the data sets
defined by LIBDEF must be cataloged.

If application PAYROLL uses panels PAYINIT and PAYTERM (members of the
library 'ISPFPROJ.ABC.PANELS'), the LIBDEF service request to identify the
panels to ISPF can be:
ISPEXEC LIBDEF ISPPLIB DATASET ID(’ISPFPROJ.ABC.PANELS’)

The DISPLAY service would then be issued as:
ISPEXEC DISPLAY PANEL(PAYINIT)

Allocate statements need not be specified before ISPF is invoked for the data
sets defined by the LIBDEF service with the DATASET keyword.

EXCLDATA
The EXCLDATA keyword indicates that ID specifies a list of cataloged user
link library data sets. EXCLDATA can only be used with ISPLLIB.

For example, if application PAYROLL uses two programs, PAYINIT and
PAYTERM, which are members of the partitioned data set
ISPFPROJ.ABC.PROGRAMS, the LIBDEF service request for identifying the
programs to ISPF can be issued as:
ISPEXEC LIBDEF ISPLLIB EXCLDATA ID(’ISPFPROJ.ABC.PROGRAMS’)

See “User link libraries” on page 104 for a discussion on the effect of the
EXCLDATA specification on member searches.

Allocate statements need not be specified before ISPF is invoked for the data
set defined by the LIBDEF service with the EXCLDATA keyword.

LIBRARY
The LIBRARY keyword associates an allocated ddname with an ISPF data
element type. The ID parameter specifies the ddname. See libname.

LIBDEF

Chapter 2. Description of the ISPF services 99

For example, if application PAYROLL uses panels PAYINIT and PAYTERM, a
LIBDEF service request used to identify the panels to ISPF is:
ISPEXEC LIBDEF ISPPLIB LIBRARY ID(PAYDD)

Before issuing this LIBDEF service request, you must issue:
ALLOCATE FI(PAYDD) DA(’ISPFPROJ.ABC.PANELS’) SHR

The DISPLAY service would then be issued as:
ISPEXEC DISPLAY PANEL (PAYINIT)

EXCLLIBR
The EXCLLIBR keyword associates an allocated user link library ddname with
the ISPF link library dialog element type. The ID parameter specifies the
ddname. See libname. (Can only be used with ISPLLIB.)

For example, if application PAYROLL uses programs PAYINIT and PAYTERM,
a LIBDEF service request for identifying the programs to ISPF is:
ISPEXEC LIBDEF ISPLLIB EXCLLIBR ID(PAYDD)

Prior to issuing this LIBDEF service request, you must issue:
ALLOCATE FI(PAYDD) DA(’ISPFPROJ.ABC.PROGRAMS’) SHR

See “User link libraries” on page 104 for a discussion on the effect of the
EXCLLIBR specification on member searches.

dataset-list
Indicates a list of cataloged data set names to be searched for the application.
A maximum of 15 data set names cam be listed. (See data-set-list for the
specification of data set lists.)

libname
Specifies the name of a previously allocated DD statement that defines the
application-level library or libraries.

COND
Specifies that the application-level library should be defined only if there is no
active application-level library for the specified type.

UNCOND
Specifies that the application-level library should be defined regardless of the
existence of an application-level library for the specified type.

STACK
Specifies the current state of the lib-type LIBDEF definition is to be stacked
before acting on the new request. Stacking occurs even when there is no active
LIBDEF definition for the specified lib-type. A null definition is stacked when
there is no active LIBDEF definition. This allows an application to issue a
LIBDEF stack request for a particular lib-type without knowing if an active
LIBDEF definition currently exists.

For example, it is valid to specify a LIBDEF definition for ISPPLIB and request
that the current ISPPLIB LIBDEF definition be stacked, even when no current
ISPPLIB LIBDEF definition exists. When the ISPPLIB LIBDEF definition that
requested stacking is removed, there will be no active ISPPLIB LIBDEF
definition in effect.

It is also valid to request stacking when resetting a particular LIBDEF
definition. For example, it is valid to specify a reset of the ISPPLIB LIBDEF
definition and request that the current ISPPLIB definition be stacked, even
when no current ISPPLIB LIBDEF definition exists. A subsequent reset request

LIBDEF

100 z/OS V2R2 ISPF Services Guide

of the ISPPLIB LIBDEF definition will restore the previously stacked ISPPLIB
LIBDEF definition, including a restoration of a null definition.

Note: You can use STACK or STKADD on a LIBDEF statement. If both STACK
and STKADD parameters are used on a single LIBDEF statement, ISPF uses
only the last one specified.

STKADD
Specifies the new LIBDEF request with the STKADD and DATASET
parameters is to be added to the existing lib-type LIBDEF definition. STKADD
concatenates the new LIBDEF request to the existing LIBDEFed lib-type
definition. No stacking is done.

Note:

1. You can use STACK or STKADD on a LIBDEF statement. If both STACK
and STKADD parameters are used on a single LIBDEF statement, ISPF uses
only the last one specified.

2. The STKADD parameter is restricted to use with the DATASET parameter.
It is not for use with the EXCLDATA, LIBRARY, or EXCLLIBR parameters.
ISPF issues a severe error message if STKADD is used with those
parameters.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC invocation for a command
procedure.

Usage notes
See:
v “LIBDEF Display utility”
v “User link libraries” on page 104
v “Message libraries” on page 104

LIBDEF Display utility
The LIBDEF Display Utility displays all active and stacked LIBDEF definitions for
the current logical screen in a scrollable list. Optionally, a specific LIBDEF library
definition may be selected.

The ISPF system command, ISPLIBD [libtype] invokes the LIBDEF Display Utility.
The optional parameter, libtype, identifies a specific LIBDEF library definition to be
displayed. All LIBDEF definitions for the current logical screen are displayed if the
parameter is omitted, if the parameter is longer than 8 characters, or if the
parameter specifies ISPPROF as the library name.

For each LIBDEF definition displayed, this information is provided:
v Stack indicator

An "S" is displayed to the left of the library name when a stacked LIBDEF
definition is presented.

v Library
v Type
v ISPxUSR indicator (for type DATASET only)
v Identification

LIBDEF

Chapter 2. Description of the ISPF services 101

For type DATASET/EXCLDATA this column contains the data set names. The
associated ISPxUSR data set names is shown when the respective DDNAME is
allocated. The ISPxUSR data sets are not shown as part of a stacked definition.

For type LIBRARY/EXCLLIBR this column contains the library name (ddname)
followed by the first or only allocated data set name.

The LIBDEF Display Utility supports the use of a LOCATE command. LOCATE is
used to locate a specific LIBDEF library name. Two command abbreviations, LOC
and L, are also supported.
LOCATE ISPPLIB

Locates the LIBDEF definition for ISPPLIB
LOC ISPMLIB

Locates the LIBDEF definition for ISPMLIB
L ISPSLIB

Locates the LIBDEF definition for ISPSLIB

This figure shows a LIBDEF Utility display of all LIBDEF definitions. Figure 5 on
page 103 shows a display of a single LIBDEF definition, and Figure 6 on page 103
shows a LIBDEF stacked definition.

┌------------------------- LIBDEF Utility ----------------------------┐
│ ISPLLSA ISPF LIBDEF Display Row 1 to 13 of 16│
│ │
│ │
│ Library Type USR Identifier │
│ │
│ ISPFILE ** LIBDEF not active ** │
│ ISPLLIB EXCLDATA ISPFPROJ.LWGMVS41.LOAD │
│ ISPFPROJ.DMTSO.LOAD │
│ ISPMLIB DATASET ISPFPROJ.LWGMVS32.MSGS │
│ ISPFPROJ.LWGMVS31.MSGS │
│ ISPPLIB DATASET X ISPFPROJ.LWG.PANELS │
│ ISPFPROJ.LWGMVS32.PANELS │
│ ISPFPROJ.LWGMVS31.PANELS │
│ ISPSLIB DATASET ISPFPROJ.RGG.SKELS │
│ ISPTABL LIBRARY MYTABLE │
│ ISPFPROJ.LWGMVS33.TABLES │
│ ISPTLIB ** LIBDEF not active ** │
│ MYGEN1 LIBRARY MYTABLE │
│ │
│ Command ===> _____________________________________ Scroll ===> CSR │
│ F1=Help F2=Split F3=Exit F7=Backward F8=Forward │
│ F9=Swap F12=Cancel │
!---┘

Figure 4. ISPLIBD - all LIBDEF definitions

LIBDEF

102 z/OS V2R2 ISPF Services Guide

When you are in the Dialog Test utility (test environment), and you issue a LIBDEF
for a panel data set from option 7.6, the LIBDEF is set up under the user
environment. In order to display a panel from the library for which you issued the
LIBDEF or to display the active LIBDEFs, you must go through a Dialog Test
utility interface.

For example, from Dialog Test's option 7.6 issue:

┌------------------------- LIBDEF Utility ----------------------------┐
│ ISPLLSA ISPF LIBDEF Display Row 1 to 3 of 3│
│ │
│ │
│ Library Type USR Identifier │
│ │
│ ISPPLIB DATASET X ISPFPROJ.LWG.PANELS │
│ ISPFPROJ.LWGMVS32.PANELS │
│ ISPFPROJ.LWGMVS31.PANELS │
│ **End** │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ Command ===> _____________________________________ Scroll ===> CSR │
│ F1=Help F2=Split F3=Exit F7=Backward F8=Forward │
│ F9=Swap F12=Cancel │
!---┘

Figure 5. ISPLIBD ISPPLIB - ISPPLIB LIBDEF definition

┌------------------------- LIBDEF Utility ----------------------------┐
│ ISPLLSA ISPF LIBDEF Display Row 1 to 4 of 4│
│ │
│ │
│ Library Type USR Identifier │
│ │
│ ISPPLIB DATASET X ISPFPROJ.LWG.PANELS │
│ ISPFPROJ.LWGMVS41.PANELS │
│ S ISPPLIB DATASET ISPFPROJ.LWGMVS32.PANELS │
│ ISPFPROJ.LWGMVS31.PANELS │
│ **End** │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ Command ===> _____________________________________ Scroll ===> CSR │
│ F1=Help F2=Split F3=Exit F7=Backward F8=Forward │
│ F9=Swap F12=Cancel │
!---┘

Figure 6. ISPLIBD ISPPLIB - ISPPLIB LIBDEF stacked definition

LIBDEF

Chapter 2. Description of the ISPF services 103

LIBDEF ISPPLIB DATASET ID(’xxxx.panels’)

To display the active LIBDEFs, go to 7.1 (the Invoke Dialog Function/Selection
Panel) and type ISPLLS at the PGM prompt and ISPPLIB at the PARM prompt;
then press Enter.

Note: If you attempt to issue the ISPLIBD ISPPLIB command from the command
line on the Dialog Test utility's option 7.6, the LIBDEF utility will indicate that
ISPPLIB has no active LIBDEFs. This is because the Dialog Test utility runs in the
test environment, not the user environment.

User link libraries
The LIBDEF ISPLLIB service can be used to specify load libraries containing
programs and command processors, which are part of an ISPF application. The
LIBDEF ISPLLIB definition causes load modules to be searched in the specified
load libraries by the SELECT service.

The LIBDEF library definitions are not searched by MVS member searches caused
by the execution of ATTACH, LINK, LOAD, or XCTL macros within the selected
program (SELECT PGM), or on the selection of authorized programs or commands.
The LIBDEF library definitions are searched for selected commands (SELECT
CMD).

These rules apply:
v If the SELECT program service is invoked using ISPEXEC SELECT

PGM(MYPROG), MYPROG is considered a member of the load libraries
specified with LIBDEF ISPLLIB. If MYPROG then transfers control by using
MVS contents supervision macros such as ATTACH, LINK, LOAD, or XCTL, any
new requested program that exists only in the LIBDEF data set is not found, and
an 806-04 abend occurs. This is because ISPF links to MYPROG, and MVS is not
aware of the load library defined using LIBDEF ISPLLIB.

v If the SELECT program service is invoked using ISPEXEC SELECT
CMD(MYCMD), MYCMD is considered a member of the load libraries specified
with LIBDEF ISPLLIB. The command processor (a program coded to support a
unique argument list format) can then use MVS contents supervision macros
such as ATTACH, LINK, LOAD, or XCTL. This is because ISPF attaches
MYCMD as a subtask to ISPF. The load library, defined using LIBDEF ISPLLIB,
is passed as a task library to the subtask.

If LIBDEF is issued while in split screen, it will only affect the screen on which it is
issued, because each screen is a separate ISPF session with its own TCB and
tasklib.

Message libraries
Definition of a message library with LIBDEF will cause a search of that data set for
the required message member before a search of the base message library. If the
member in the LIBDEF-defined message library has the same name as a member in
the base library, all messages within the base message data set member must be
included in the LIBDEF-defined message data set member. If the message member
found in the LIBDEF-defined message library does not contain the message being
searched for, another search will not be made for the message in the base message
library.

For example, if message ABCD009 is in the base library member ABCD00, but not
in the LIBDEF-defined message library member ABCD00, message ABCD009 will
not be found while the LIBDEF is active.

LIBDEF

104 z/OS V2R2 ISPF Services Guide

Return codes
These return codes are possible:

0 Normal completion.

4 When removing the application library: Application library does not exist
for this type.

When STKADD is specified: There is no existing stack.

8 When COND is used: Application library already exists for this type.

12 ISPPROF was specified as the lib-type; invalid lib-type specified with
EXCLDATA or EXCLLIBR.

16 A libname was not allocated, or the dataset-list contains an invalid MVS
dsname.

20 Severe error.

Note: A return code of 0 can be received for a generic lib-type, even though the
library does not exist. No allocation verification is done until the generic lib-type is
referenced using the LIBRARY parameter on a file tailoring or table service request.

Examples
See:
v “Example 1: The DATASET keyword”
v “Example 2: The EXCLDATA keyword” on page 106
v “Example 3: The LIBRARY keyword” on page 106
v “Example 4: The EXCLLIBR keyword” on page 107
v “Example 5: The STACK keyword” on page 107
v “Example 6: The STKADD keyword” on page 108

Example 1: The DATASET keyword
Assume that the user has issued these ALLOCATE statements for a panel library
before entering ISPF:
ALLOCATE DATASET(’ISPFPROJ.ABC.MYPAN’) FILE(ISPPUSR) SHR
ALLOCATE DATASET(’ISPFPROJ.ABC.PANELS’) FILE(ISPPLIB) SHR

Next, the LIBDEF service is invoked with the DATASET keyword to define an
application-level panel library (a partitioned data set).
ISPEXEC LIBDEF ISPPLIB DATASET ID(’ISPFPROJ.ABC.APPAN1’,

’ISPFPROJ.ABC.APPAN2’)

or alternately
CALL ISPLINK(’LIBDEF ’, ’ISPPLIB ’, ’DATASET ’,

’(’ISPFPROJ.ABC.APPAN1’,’ISPFPROJ.ABC.APPAN2’’)’);

This example assumes that ISPFPROJ.ABC.MYPAN contains panels unique to the
user. Panels unique to the application are contained in partitioned data sets
ISPFPROJ.ABC.APPAN1 and ISPFPROJ.ABC.APPAN2.

The search sequence for panel APPLPAN1 is as follows:
1. Search for the member APPLPAN1 in ISPFPROJ.ABC.MYPAN
2. Search for the member APPLPAN1 in ISPFPROJ.ABC.APPAN1
3. Search for the member APPLPAN1 in ISPFPROJ.ABC.APPAN2
4. Search for the member APPLPAN1 in ISPFPROJ.ABC.PANELS

LIBDEF

Chapter 2. Description of the ISPF services 105

If the LIBDEF service had not been invoked, only ISPFPROJ.ABC.PANELS would
have been searched for member APPLPAN1. The user library would not be
searched.

To clear the LIBDEF after setting it, use either
’ISPEXEC LIBDEF ISPPLIB’
or
’ISPEXEC LIBDEF ISPPLIB DATASET()’

or additionally
CALL ISPLINK(’LIBDEF ’, ’ISPPLIB ’, ’ ’,’ ’);
or
CALL ISPLINK(’LIBDEF ’, ’ISPPLIB ’, ’DATASET ’,’()’);

Example 2: The EXCLDATA keyword
Assume that the user has issued these ALLOCATE statements for a user link
library before entering ISPF:
ALLOCATE DATASET(’ISPFPROJ.ABC.MYMOD’) FILE(ISPLUSR) SHR
ALLOCATE DATASET(’ISPFPROJ.ABC.LLOAD’) FILE(ISPLLIB) SHR

Next, the LIBDEF service is invoked with the EXCLDATA keyword to define an
application-level link library (a partitioned data set).
ISPEXEC LIBDEF ISPLLIB EXCLDATA ID(’ISPFPROJ.ABC.APMOD1’,

’ISPFPROJ.ABC.APMOD2’)

or alternately
CALL ISPLINK(’LIBDEF ’, ’ISPLLIB ’, ’EXCLDATA’,

’(’ISPFPROJ.ABC.APMOD1’,’ISPFPROJ.ABC.APMOD2’’)’);

This example assumes that MYMOD contains programs or commands unique to
the user. Programs unique to the application are contained in partitioned data sets
ISPFPROJ.ABC.APMOD1 and ISPFPROJ.ABC.APMOD2.

The search sequence for program APPLMOD1 is as follows:
1. Search for the member APPLMOD1 in ISPFPROJ.ABC.APMOD1
2. Search for the member APPLMOD1 in ISPFPROJ.ABC.APMOD2

If the LIBDEF service had not been invoked, only ISPFPROJ.ABC.LLOAD would
have been searched for member APPLMOD1. The user library would not be
searched.

Example 3: The LIBRARY keyword
Assume the user has issued these ALLOCATE statements for an application-level
panel library before entering ISPF:
ALLOCATE DATASET(’ISPFPROJ.ABC.APPAN1’,

’ISPFPROJ.ABC.APPAN2’) FILE(APPLIB) SHR
ALLOCATE DATASET(’ISPFPROJ.ABC.MYPAN’) FILE(ISPPUSR) SHR
ALLOCATE DATASET(’ISPFPROJ.ABC.PANELS’) FILE(ISPPLIB) SHR

Next, the LIBDEF service is invoked with the LIBRARY keyword to define an
application-level panel libname.
ISPEXEC LIBDEF ISPPLIB LIBRARY ID(APPLIB)

or alternately
CALL ISPLINK(’LIBDEF ’, ’ISPPLIB ’, ’LIBRARY ’, ’APPLIB ’);

LIBDEF

106 z/OS V2R2 ISPF Services Guide

The search sequence, using the APPLIB definition, for panel APPLPAN1 is as
follows:
1. Search for the member APPLPAN1 in ISPFPROJ.ABC.APPAN1
2. Search for the member APPLPAN1 in ISPFPROJ.ABC.APPAN2.

The search sequence, using the ISPPLIB definition, for panel APPLPAN1 is as
follows:
v Search for the member APPLPAN1 in ISPFPROJ.ABC.PANELS.

If the LIBDEF service had not been invoked, only ISPFPROJ.ABC.PANELS would
have been searched for APPLPAN1. The user library would not be searched.

Example 4: The EXCLLIBR keyword
Assume the user has issued these ALLOCATE statements for an application-level
link library before entering ISPF:
ALLOCATE DATASET(’ISPFPROJ.ABC.APMOD1’,

’ISPFPROJ.ABC.APMOD2’) FILE(APLLIB) SHR
ALLOCATE DATASET(’ISPFPROJ.ABC.MYMOD’) FILE(ISPLUSR) SHR
ALLOCATE DATASET(’ISPFPROJ.ABC.LLOAD’) FILE(ISPLLIB) SHR

Next, the LIBDEF service is invoked with the EXCLLIBR keyword to define an
application-level user link library.
ISPEXEC LIBDEF ISPLLIB EXCLLIBR ID(APLLIB)

or alternately
CALL ISPLINK(’LIBDEF ’, ’ISPLLIB ’, ’EXCLLIBR’, ’APLLIB ’);

The search sequence for program APPLMOD1, using the APLLIB definition, is as
follows:
1. Search for the member APPLMOD1 in ISPFPROJ.ABC.APMOD1
2. Search for the member APPLMOD1 in ISPFPROJ.ABC.APMOD2.

If the LIBDEF service had not been invoked, only ISPFPROJ.ABC.LLOAD would
have been searched for APPLMOD1. The user library would not be searched.

Example 5: The STACK keyword
Assume these LIBDEF commands are executed:
ISPEXEC LIBDEF ISPPLIB
ISPEXEC LIBDEF ISPPLIB STACK

ISPEXEC LIBDEF ISPPLIB DATASET ID(’ISPFPROJ.LWG.PANELS’) STACK

ISPEXEC LIBDEF ISPPLIB DATASET ID(’ISPFPROJ.LWGMVS33.PANELS’) STACK

The execution of these commands produces these results:
1. The first LIBDEF resets the ISPPLIB LIBDEF definition. This is considered a

"null" definition for ISPPLIB.
2. The second LIBDEF stacks the previous "null" definition for ISPPLIB and resets

the ISPPLIB LIBDEF definition. This is the second "null" definition for ISPPLIB.
3. The third LIBDEF stacks the previous "null" definition for ISPPLIB and

establishes the ISPPLIB definition for data set 'ISPFPROJ.LWG.PANELS'.
4. The fourth LIBDEF stacks the previous ISPPLIB definition for data set

'ISPFPROJ.LWG.PANELS' and establishes the ISPPLIB definition for data set
'ISPFPROJ.LWGMVS33.PANELS'.

Next, these LIBDEF service calls are issued:

LIBDEF

Chapter 2. Description of the ISPF services 107

ISPEXEC LIBDEF ISPPLIB (restores ’ISPFPROJ.LWG.PANELS’)
Return code = 0

ISPEXEC LIBDEF ISPPLIB (restores stacked "null" definition)

Return code = 0

ISPEXEC LIBDEF ISPPLIB (restores stacked "null" definition)

Return code = 0

ISPEXEC LIBDEF ISPPLIB

Return code = 4

The preceding service calls produce these results:
1. The first LIBDEF reset restores the ISPPLIB definition for data set

'ISPFPROJ.LWG.PANELS'.
2. The second LIBDEF reset restores the stacked "null" definition for ISPPLIB. This

is the "null" definition which issued the keyword, STACK.
3. The third LIBDEF restores the stacked "null" definition. This is the "null"

definition which did not issue the keyword, STACK.
4. The fourth LIBDEF receives a return code of 4 because there is nothing in the

stack and there is no active ISPPLIB definition.

Example 6: The STKADD keyword
Assume these LIBDEF commands are executed:
ISPEXEC LIBDEF ISPPLIB
ISPEXEC LIBDEF ISPPLIB STACK

ISPEXEC LIBDEF ISPPLIB DATASET ID(’ISPFPROJ.LWG.PANELS’) STACK

ISPEXEC LIBDEF ISPPLIB DATASET ID(’ISPFPROJ.ABC.PANELS’) STKADD

The execution of these commands produces these results:
1. The first LIBDEF resets the ISPPLIB LIBDEF definition. This is considered a

"null" definition for ISPPLIB.
2. The second LIBDEF stacks the previous "null" definition for ISPPLIB and resets

the ISPPLIB LIBDEF definition. This is the second "null" definition for ISPPLIB.
3. The third LIBDEF stacks the previous "null" definition for ISPPLIB and

establishes the ISPPLIB definition for data set 'ISPFPROJ.LWG.PANELS'.
4. The fourth LIBDEF concatenates the data set 'ISPFPROJ.ABC.PANELS' ahead of

the data set 'ISPFPROJ.LWG.PANELS' in the current ISPPLIB definition.

After the third LIBDEF service call the LIBDEF Display Utility would show:

LIBDEF

108 z/OS V2R2 ISPF Services Guide

LIBDEF Utility
ISPF LIBDEF Display Row 1 to 11 of 11

Command ===> Scroll ===> PAGE

Library Type USR Identifier
ISPFILE ** LIBDEF not active **
ISPILIB ** LIBDEF not active **
ISPLLIB ** LIBDEF not active **
ISPMLIB ** LIBDEF not active **
ISPPLIB DATASET ISPFPROJ.LWG.PANELS

S ISPPLIB ** LIBDEF not active **
S ISPPLIB ** LIBDEF not active **

ISPSLIB ** LIBDEF not active **
ISPTABL ** LIBDEF not active **
ISPTLIB ** LIBDEF not active **

After the fourth LIBDEF service call the LIBDEF Display Utility would show:

LIBDEF Utility
ISPF LIBDEF Display Row 1 to 11 of 11

Command ===> Scroll ===> PAGE

Library Type USR Identifier
ISPFILE ** LIBDEF not active **
ISPILIB ** LIBDEF not active **
ISPLLIB ** LIBDEF not active **
ISPMLIB ** LIBDEF not active **
ISPPLIB DATASET ISPFPROJ.ABC.PANELS

ISPFPROJ.LWG.PANELS
S ISPPLIB ** LIBDEF not active **
S ISPPLIB ** LIBDEF not active **

ISPSLIB ** LIBDEF not active **
ISPTABL ** LIBDEF not active **
ISPTLIB ** LIBDEF not active **

Next, these LIBDEF service calls are issued:
ISPEXEC LIBDEF ISPPLIB (restores stacked "null" definition)

Return code = 0
ISPEXEC LIBDEF ISPPLIB (restores stacked "null" definition)

Return code = 0
ISPEXEC LIBDEF ISPPLIB

Return code = 4

LIST—write lines to the list data set
The LIST service allows a dialog to write data lines directly (without using print
commands or utilities) to the ISPF list data set. You specify the name of the dialog
variable containing the data to be written on the LIST service request. The amount
of data that can be written with one LIST request is one or more lines totaling up
to 32 767 bytes, the maximum size of the dialog variable.

The list data set, if allocated, is normally processed when you exit ISPF. A LIST
command is available to allow you to process the list data set without exiting ISPF.

Command invocation format

�� ISPEXEC LIST BUFNAME(dialog-variable-name) LINELEN(line-length) �

LIBDEF

Chapter 2. Description of the ISPF services 109

�
PAGE

SINGLE
DOUBLE
TRIPLE OVERSTRK CC

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('LIST����' , dialog-variable-name, line-length �

� , 'PAGE����'
'�'

'SINGLE��'
, '�'

'DOUBLE��'
'TRIPLE��'

, 'OVERSTRK'
'�'

, 'NO������');
'�'

��

Parameters
dialog-variable-name

Specifies the name of the dialog variable that contains the text (32,767 bytes
maximum) to be written to the list data set.

line-length
Specifies the length of each line in the buffer being passed to ISPF. ISPF
truncates these lines if the line-length specified is greater than the truncation
value in system variable ZLSTTRUN. The line-length must have an unsigned
integer value and, for a call, must be a fullword fixed integer.

PAGE
Specifies that the first data line of this LIST service request is to be written to
the list data set preceded by a page eject carriage control character. The spacing
of the remaining lines is determined by the SINGLE, DOUBLE, or TRIPLE
keyword specified. PAGE is ignored if the CC keyword is specified.

SINGLE
Specifies that each line of data is to be written to the list data set preceded by
a single space carriage control character. SINGLE is the default line spacing
keyword value. SINGLE is ignored if the CC keyword is specified.

DOUBLE
Specifies that each line of data is to be written to the list data set preceded by
a double space carriage control character. DOUBLE is ignored if the CC
keyword is specified.

TRIPLE
Specifies that each line of data is to be written to the list data set preceded by
a triple space carriage control character. TRIPLE is ignored if the CC keyword
is specified.

OVERSTRK
Specifies that each line of data is to be written with overstrikes. That is, the
line is first written with the line spacing specified, then written again with the
line spacing suppressed. This allows a dialog to request text highlighting on
printed output. OVERSTRK is ignored if the CC keyword is specified.

LIST

110 z/OS V2R2 ISPF Services Guide

CC Specifies that carriage control is to be provided by the dialog as the first byte
of each data line. Specifying CC nullifies specification of the PAGE, SINGLE,
DOUBLE, TRIPLE, or OVERSTRK keyword. If CC is specified, the value
specified for line-length should include one byte for the carriage control
character.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

8 Maximum line length or data set LRECL exceeded; data has been
truncated.

12 Specified dialog variable not found.

20 Severe error.

Formatting data to be written to the list data set
ISPF writes data to the list data set exactly as received in the dialog variable,
which acts as the data buffer. The dialog must provide any data formatting or
centering before passing the data to ISPF. The length of each data line passed to
ISPF is the value of the line-length parameter specified on the LIST service request.
If the line-length value is greater than or equal to the length of the passed data,
ISPF writes the data as a single line in the list data set. If the line-length value is
less than the length of the passed data, ISPF writes the data in multiple lines. If the
line-length value specified is zero and CC is not specified, ISPF writes one blank
line to the list data set. If CC is specified, the line length specified must be at least
one (to accommodate the carriage control character); otherwise, a severe error
results.

List data set characteristics affect the LIST service
The dialog user can specify the logical record length (LRECL) and maximum line
length values for the list data set by using SETTINGS option 0. ISPF uses these two
values in determining where truncation of lines written to the list data set is to
occur.

The value in system variable ZLSTTRUN defines where ISPF is to truncate lines
written to the list data set. This value is not directly alterable by the dialog. The
value in ZLSTTRUN is the lesser of:
1. LRECL minus 1 (fixed-record format data sets) or LRECL minus 5

(variable-record format data sets)
The logical record length can be established for the list data set before the ISPF
session (by preallocating the data set), or, if that is not the case, it can be
specified on SETTINGS option 0.

2. LINE LENGTH - Default value specified on SETTINGS option 0.

LIST

Chapter 2. Description of the ISPF services 111

Controlling line spacing, page eject, and highlighting
Line spacing and page ejects can be under control of either the dialog or ISPF. If
the dialog specifies CC on the LIST service request, the dialog controls all carriage
functions, using the first byte of each line passed to ISPF as a carriage-control
character. Therefore, when CC is specified on the LIST service request, ISPF ignores
any SINGLE, DOUBLE, TRIPLE, PAGE, and OVERSTRK keywords.

ISPF causes an automatic page eject (regardless of CC keyword status) for a LIST
service request that causes information to be written to a list data set for the first
time in the session.

How ISPF controls printer functions (CC not specified)
When the dialog does not specify CC on the LIST service request, ISPF appends a
carriage control byte ahead of each line to be written to the list data set.

The dialog can include the SINGLE, DOUBLE, or TRIPLE keyword on the LIST
service request to tell ISPF how lines are to be spaced when written to the list data
set. Single spacing is the default value. The dialog can also specify, along with the
line spacing keyword, the OVERSTRK keyword on the LIST service to cause
highlighting.

The optional PAGE keyword on the LIST request tells ISPF that the first line
written by this request is to include a page eject control character. Thereafter, page
ejects are caused by:
v ISPF providing the page eject carriage control when the lines-per-page value (1

to 999) in system variable ZLSTLPP is reached, or
v The dialog specifying the PAGE keyword on a subsequent LIST service request.

How the dialog controls printer functions (CC specified)
When the dialog specifies CC on the LIST service request, ISPF ignores any other
printer control keywords. ISPF then relies on the dialog to supply the printer
control information as the first byte of each line in the data buffer to be written.
ISPF does not check the validity of the characters included for carriage control.

Using system variables ZLSTNUML and ZLSTLPP
ZLSTNUML

This 4-byte shared pool variable contains the number of lines that have
been written to the current page in the list data set. If the list data set is
not open the value in ZLSTNUML is zero.

ZLSTNUML is set by ISPF and is not directly alterable by a dialog.

ZLSTLPP
This 4-byte shared pool variable contains the value that specifies what the
maximum number of lines per page written to the list data set is to be.

You can set the value in ZLSTLPP (lines-per-page) by using SETTINGS
option 0. ZLSTLPP is not directly alterable by a dialog.

Dialogs that provide carriage control characters can test variables ZLSTNUML and
ZLSTLPP for values to determine when printing should begin on a new page.

The ANSI-defined carriage control characters in the chart shown are recognized by
the LIST service for updating (incrementing the number of page line spaces used)

LIST

112 z/OS V2R2 ISPF Services Guide

the value of ZLSTNUML. If the dialog passes any other carriage control character
along with the CC keyword, the character is written to the list data set, but does
not affect the value of ZLSTNUML.

The carriage control characters, whether supplied to ISPF with each line to be
printed or supplied by ISPF, cause the actions listed in the chart shown:

Character Action (before printing) ZLSTNUML is
blank Space 1 line Incremented 1
0 Space 2 lines " 2
- Space 3 lines " 3
+ Suppress spacing Not changed
1 Skip to line 1 Set to 1

on new page

How carriage control characters affect truncation
ISPF counts only data characters, not the carriage-control character, in calculating
the point at which truncation is to occur. A dialog can determine what the
truncation value is by querying system variable ZLSTTRUN in the shared variable
pool.

The carriage-control byte must be taken into account when calculating where
truncation will occur. For example, assume that the truncation value in ZLSTTRUN
is 79, indicating that a maximum of 79 characters per list data set line, not
including carriage-control, are allowed. Also, assume the dialog passes a line of 80
characters to be written to the list data set. Truncation is as follows:
v If the dialog has specified the CC (carriage-control) keyword on the LIST

request, the first byte in the line passed to ISPF is the carriage-control character,
followed by 79 data characters. Because ISPF does not count the carriage-control
character as one of the truncation value (79), no truncation occurs.

v If the dialog has not specified the CC keyword, ISPF appends the
carriage-control byte ahead of the line of 80 data characters passed by the dialog.
In this case, the truncation value of 79 causes one data character to be truncated.

Examples
See:
v “Example 1”
v “Example 2” on page 114
v “Example 3” on page 114
v “Example 4” on page 114

Example 1
Using three LIST service requests, write three lines, containing the text 'Line 1',
'Line 2', and 'Line 3' respectively, to the list data set. The text is to start at the top
of a new page, and be double spaced.

In preparation:
v Set dialog variable LINE1 to the value 'Line 1'
v Set dialog variable LINE2 to the value 'Line 2'
v Set dialog variable LINE3 to the value 'Line 3'

Then issue:
ISPEXEC LIST BUFNAME(LINE1) LINELEN(6) PAGE
ISPEXEC LIST BUFNAME(LINE2) LINELEN(6) DOUBLE
ISPEXEC LIST BUFNAME(LINE3) LINELEN(6) DOUBLE

or alternately

LIST

Chapter 2. Description of the ISPF services 113

Set variable LEN to 6 and issue:
CALL ISPLINK (’LIST ’,’LINE1 ’,LEN,’PAGE ’);
CALL ISPLINK (’LIST ’,’LINE2 ’,LEN,’ ’,’DOUBLE ’);
CALL ISPLINK (’LIST ’,’LINE3 ’,LEN,’ ’,’DOUBLE ’);

Example 2
Write the same three lines as in Example 1, but with one LIST service request.

In preparation, set dialog variable LSTTEXT to the value:
’Line 1Line 2Line 3’

Then issue:
ISPEXEC LIST BUFNAME(LSTTEXT) LINELEN(6) PAGE DOUBLE

or alternately

Set variable LEN to 6 and issue:
CALL ISPLINK (’LIST ’,’LSTTEXT ’,LEN,’PAGE ’,’DOUBLE ’);

Example 3
Write the same three lines as in the previous examples, but with the carriage
control characters being passed to ISPF.

In preparation, set dialog variable LSTTEXT to the value:
’1Line 10Line 20Line 3’

The characters '1' and '0' preceding the word 'Line' in LSTTEXT are carriage control
characters for page eject and double space respectively.

Then issue:
ISPEXEC LIST BUFNAME(LSTTEXT) LINELEN(7) CC

or alternately

Set variable LEN to 7 and issue:
CALL ISPLINK (’LIST ’,’LSTTEXT ’,LEN,’ ’,’ ’,’ ’,’CC ’);

Note that the line-length value has been increased by one to account for the
carriage control byte.

Example 4
Print the same three lines as in Example 3. This time, assume that ZLSTTRUN has
a value of 5. In preparation, set up conditions to cause the value of ZLSTTRUN to
be 5. This value is the lesser of:
v The logical record length of the list data set minus one (fixed format) or the

record length minus five (variable format).
v The value specified for list data set line length using SETTINGS option 0.

LSTTEXT is set the same way, and the LIST request issued the same way, as for
Example 3. The difference in data written to the list data set for Example 4
compared to Example 3 illustrates the truncation:

LIST

114 z/OS V2R2 ISPF Services Guide

Example 3 Example 4
1Line 1 1Line

0Line 2 0Line

0Line 3 0Line

LMCLOSE—close a data set
The LMCLOSE service closes the data set associated with a given data ID. For each
LMOPEN invocation, you should invoke a matching LMCLOSE service when
processing is complete. Otherwise, unwanted data can be read from or written to
the data set.

If LMINIT is issued with an enqueue (ENQ) of SHRW and LMOPEN is issued
with the OUTPUT option, it is important that an LMCLOSE be issued when the
dialog has finished processing the data set, since the DASD volume is reserved
until LMCLOSE is invoked. On output, if the data is sequential, the LMCLOSE
service writes the last physical block.

Command invocation format

�� ISPEXEC LMCLOSE DATAID(data-id) ��

Call invocation format

�� CALL ISPLINK ('LMCLOSE�',data-id); ��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
data-id

The data ID associated with the data set to be closed. The data ID is generated
by the LMINIT service. The maximum length of this parameter is 8 characters.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return codes
These return codes are possible:

0 Normal completion.

8 Data set is not open.

10 No ISPF library or data set associated with the given data ID; that is,
LMINIT has not been completed.

LIST

Chapter 2. Description of the ISPF services 115

20 Severe error; unable to continue.

Example
This example invokes the LMCLOSE service to close the data set associated with
the data ID in variable DDVAR.

Command invocation
ISPEXEC LMCLOSE DATAID(&DDVAR)

Call invocation
CALL ISPLINK(’LMCLOSE ’,DDVAR);
OR

Set the program variable BUFFER to contain:
BUFFER = ’LMCLOSE DATAID(&DDVAR)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

LMCOMP—compresses a partitioned data set
The LMCOMP service compresses a data set. The installation-supplied compress
exit is used, or, if there is no exit, IEBCOPY is used. Completion of the LMINIT
service specifying ENQ(EXCLU) is required before you invoke LMCOMP.

Command invocation format

�� ISPEXEC LMCOMP DATAID(data-id) ��

Call invocation format

�� CALL ISPLINK ('LMCOMP��',data-id); ��

or

�� CALL ISPEXEC (buf-len,buffer); ��

Parameters
data-id

The data ID associated with the data set to be compressed. The data ID has
been generated by the LMINIT service. The data ID must be associated with
only one data set. Concatenations are not allowed. The maximum length of this
parameter is 8 characters.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

LMCLOSE

116 z/OS V2R2 ISPF Services Guide

Return codes
The compress request exit routine is responsible for handling all errors that occur
while it is in control. The compress exit must pass the return codes to LMCOMP.
See z/OS V2R2 ISPF Planning and Customizing for information about the Compress
Exit.

These return codes are possible:

0 Successful completion.

8 Library type is a PDSE and cannot be compressed

10 No data set associated with the given data ID.

12 One of these:
v Data set not partitioned
v Data set specified not allocated
v Data set is open
v Data set is not movable
v Data set must be allocated exclusively. Use ENQ(EXCLU) in LMINIT

service.
v Concatenated libraries are not allowed for LMCOMP.

20 Severe error; unable to continue.

Example
This example invokes the LMCOMP service to compress the data set associated
with the data ID in variable DDVAR.

Command invocation
ISPEXEC LMCOMP DATAID(&DDVAR)

Call invocation
CALL ISPLINK(’LMCOMP ’,DDVAR);
OR

Set the program variable BUFFER to contain:
BUFFER = ’LMCOMP DATAID(&DDVAR)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

LMCOPY—copy members of a data set
The LMCOPY service copies members of a partitioned data set, or copies an entire
sequential data set. Packing data, replacing members, and automatic truncation are
optional. Only fixed-length and variable-length data sets can be packed.

Completion of the LMINIT service is required before you can invoke LMCOPY.
You must specify ENQ(MOD) with the LMINIT service if you want to use
LMCOPY to append records to the “to-data-id”. See “LMINIT—generate a data ID
for a data set” on page 142 for information that can help prevent some common
I/O errors that might occur when using the LMCOPY service. LMCOPY requires
that the to-data-id and from-data-id be closed before invocation.

Note:

LMCOMP

Chapter 2. Description of the ISPF services 117

1. FROMID and TODATAID can refer to the same data set but they cannot have
the same data-id.

2. LMCOPY does not support the copying of unmovable data sets (data set
organization POU or PSU).

3. If the ALIAS option is in effect, LMCOPY automatically processes alias
members as follows:
v Either the main member or any alias member may be selected to copy the

main member and all of its aliases. This will occur even if some of the
members are not displayed in the current member selection list.

v Alias members are copied for both load data sets and non-load data sets as
well as for PDS and PDSE data sets.

Copying to the same data set is not supported when aliases are automatically
selected, as it would result in the “from” and “to” member names being the
same.

4. If the NOALIAS option is in effect, LMCOPY does not copy alias members
unless one of these is true:
v All members of the data set are selected.
v A member pattern is used and both the main member and the alias member

are included in that pattern.
If the NOALIAS option is in effect, copying an alias member by itself will
result in a new member being created, even if the main member has already
been copied.

5. If from-data-id represents an empty sequential data set, LMCOPY performs the
copy but sets the return code to 4 as a warning.

Command invocation format

�� ISPEXEC LMCOPY FROMID(from-data-id)
FROMMEM(from-member-name)

�

� TODATAID(to-data-id)
TOMEM(to-member-name)

�

�
REPLACE PACK TRUNC LOCK SCLMSET(Y)

N

�

�
ALIAS

NOALIAS
��

Call invocation format

�� CALL ISPLINK ('LMCOPY��' , from-data-id , from-member-name
'�'

�

LMCOPY

118 z/OS V2R2 ISPF Services Guide

� ,to-data-id , to-member-name
'�'

, 'REPLACE�'
'�'

, 'PACK����'
'�'

, �

� 'TRUNC���'
'�'

, 'LOCK����'
'�'

, '�'
'YES�����'
'NO '

,
'ALIAS���'
'�'
'NOALIAS�'

); ��

or

�� CALL ISPEXEC (buf-len,buffer); ��

Parameters
from-data-id

The data ID associated with the data set to be copied. The data ID has been
generated by the LMINIT service. The maximum length of this parameter is 8
characters.

from-member-name
The member name or pattern of the members to be moved. An asterisk (*)
indicates that all members are to be moved. If the “from” data set is
partitioned, this parameter is required. If it is sequential, this parameter is not
allowed. The maximum length of this parameter is 8 characters.

to-data-id
The data ID associated with the data set to be copied to. The data ID has been
generated by the LMINIT service. The maximum length of this parameter is 8
characters.

to-member-name
The name of the member being moved to the “to” data set. If a name is not
specified, the name of the member in the “from” data set is used. If the “from”
data set is sequential and the “to” data set is partitioned, this parameter is
required. If the “to” data set is sequential, this parameter is not allowed. The
maximum length of this parameter is 8 characters.

REPLACE
Like-named members in the “to” data set are to be replaced. If this parameter
is not specified and a like-named member exists in the “to” data set, the copy
function is performed on all other members except like-named members, and a
return code of 12 is issued.

If a list of members is being copied and one cannot be replaced, a message is
issued indicating how many members were copied and how many were not
replaced.

PACK
Data is stored in the “to” data set in packed format. If this parameter is not
specified, data is copied and stored as unpacked.

TRUNC
Truncation is to occur if the logical record length of the “to” data set is less
than the logical record length of the “from” data set. If this parameter is not
specified and the logical record length of the “to” data set is less than the
logical record length of the “from” data set, the copy is not performed and a
return code of 16 is issued.

LMCOPY

Chapter 2. Description of the ISPF services 119

LOCK
The LOCK parameter is no longer used since the removal of LMF from the
ISPF product, but is left in for compatibility. If LOCK is specified, the
LMCOPY service will fail with return code 12. If you want to be able to specify
YES and have the LMCOPY ignore the value, change the
FAIL_ON_LMF_LOCK keyword value in the ISPF Configuration Table to NO.

SCLMSET
ISPF maintains a bit in the PDS directory to indicate whether a member was
last modified using SCLM or some function outside of SCLM. The SCLMSET
value indicates how to set this bit. YES indicates to set the bit ON. NO
indicates the bit should be OFF. If you want to keep the current setting for a
certain member, omit the SCLMSET parameter.

ALIAS|NOALIAS
With ALIAS in effect, either the main member or any alias member may be
selected to copy the main member and all of its aliases. This will occur even if
a single member is specified or if some of the members are not displayed in
the current member selection list.

With NOALIAS in effect, aliases must be copied manually to maintain the
correct alias relationship. That is, the main member must be copied first
followed by the aliases.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

4 Member not available, which indicates one of these situations:
v The “from” data set is empty.
v No members matched the specified pattern in the “from” data set.

8

v The from-member-name was not found.
v The same name was specified for to-member-name and from-member-name.

10 No data set is associated with the given data ID.

12 One of these:
v A like-named member already exists in the “to” data set and the Replace

option was not specified
v One or more members of the “to” data set are "in use", either by you or

by another user, and could not be copied
v Invalid data set organization
v Data set attribute invalid for copying or copying packed data
v Open error
v LOCK parameter is specified

16 Truncation error.

LMCOPY

120 z/OS V2R2 ISPF Services Guide

20 Severe error; unable to continue.

Example
This example invokes the LMCOPY service to copy all member names beginning
with the letter 'L' in the data set associated with the data ID in variable DDVAR to
the data set associated with the data ID in variable DDVAR2. Like-named members
in the “to” data set are replaced, the data is packed, and truncation will occur if
necessary.

Command invocation
ISPEXEC LMCOPY FROMID(&DDVAR) FROMMEM(L*) +

TODATAID(&DDVAR2) REPLACE PACK TRUNC

Call invocation
CALL ISPLINK(’LMCOPY ’,DDVAR,’L* ’,DDVAR2,’ ’, ’REPLACE ’,

’PACK ’,’TRUNC ’);

or

Set the program variable BUFFER to contain:
BUFFER = ’LMCOPY FROMID(&DDVAR) FROMMEM(L*)

TODATAID(&DDAVAR2) REPLACE PACK TRUNC’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

LMDDISP—data set list service
The LMDDISP service allows you to write your own data set list dialog. This
service is similar to ISPF option 3.4, the data set list utility, which displays the list
of data sets. The LMDDISP service displays any view of the data set list (Volume,
Space, Attrib, or Total) that you want to display first. You can then scroll to any
other view from the initial display view.

The LMDDISP service is given a data set list ID (dslist-id) which has been
associated with a data set level or volume or both by the LMDINIT service. The
LMDINIT generates a data set list ID from a data set level or volume or both. The
data set list ID must be freed by the LMDFREE service.

Command invocation format

�� ISPEXEC LMDDISP LISTID(dslist-id)
VOLUME

VIEW(SPACE)
ATTRIB
TOTAL

�

�
YES

CONFIRM(NO)
PANEL(panel-name) NO

CATALOG(YES)

�

LMCOPY

Chapter 2. Description of the ISPF services 121

�
NO

TOTALS(YES)
YES

STATUS(NO)
YES

EXDATE(NO)

�

�
YES

REFLIST(NO)

��

Call invocation format

�� CALL ISPEXEC (buf-len,buffer); ��

or

�� CALL ISPLINK('LMDDISP�' , dslist-id
'VOLUME��'

, '�'
'SPACE���'
'ATTRIB '
'TOTAL���'

'YES�����'
, '�'

NO '
�

� , panel-name
'�'

'NO '
, '�'

'YES '

'NO '
, '�'

'YES '

'YES '
, '�'

'NO '
�

�
'YES '

, '�');
'NO '

'YES '
, '�');

'NO '
��

Parameters
dslist-id

A data set list ID associated with a data set name level or a volume or both by
the LMDINIT service. For more information about the data set level and how it
determines which data set names are to be included in the data set list, see
“LMDINIT—initialize a data set list” on page 125.

VOLUME|SPACE|ATTRIB|TOTAL
The Volume view shows a data set list that contains data set names and the
volumes on which they reside. The list is sorted by data set name. Volume is
the default.

The Space view shows a data set list that contains data set names, tracks,
percentages used, extents, and devices. The list is sorted by data set name.

The Attrib view shows a data set list that contains data set names, data set
organizations, record formats, logical record lengths, and block sizes. The list is
sorted by data set name.

The Total view shows a data set list that contains all information displayed by
the Volume, Space, and Attrib views, plus the created, expired, and referred
dates. The list is sorted by data set name and has two lines per data set.

YES|NO (CONFIRM)
This parameter controls whether the Confirm Delete panel appears when using
the D (delete data set) line command from the displayed data set list. YES is
the default.

LMDDISP

122 z/OS V2R2 ISPF Services Guide

If YES is specified, ISPF displays the Confirm Delete panel. This gives you the
opportunity to change your mind and keep the data set. If you try to delete an
expired data set, the Confirm Purge panel appears following the Confirm
Delete panel.

If NO is specified, ISPF does not display the Confirm Delete panel. The data
set is deleted without your having to take any additional actions unless you
try to delete an unexpired data set. If this is the case, the Confirm Purge panel
appears.

panel-name
The name of the panel to use for displaying a data set list. The default is the
data set list found in option 3.4, the data set list utility. This can be a
customized panel that you provided. See z/OS V2R2 ISPF Planning and
Customizing for more information on developing a customized panel.

YES|NO (CATALOG)
This parameter controls whether the name of the catalog where each data set
was located is displayed on the Total view. This parameter is ignored if a value
for the volume-serial parameter is passed on the LMDINIT call.

YES|NO (TOTALS)
This parameter controls whether the total tracks of all datasets, the total tracks
of all non-excluded data sets, the number of all data sets and the number of all
non-excluded data sets in the list is displayed in an additional header line
above the column descriptions. This parameter is ignored for the VOLUME
and ATTRIB view. The default for the SPACE and TOTAL view is NO.
Processing time for the initial view will increase depending on the size of the
data set list, as the track information for all data sets has to be collected up
front. The progress of the data collection can be displayed in a popup panel by
selecting option STATUS.

YES | NO (STATUS)
This parameter controls, whether a popup panel with a progress bar is
displayed during the collection of the data set information. The parameter is
only applicable when TOTALS is selected on the SPACE or TOTAL view. Note:
The progress panel will only be displayed if the data set list contains at least
50 data sets.

YES | NO (EXDATE)
This parameter controls whether the expiration date or the referred date is
displayed on the TOTAL view of the data set list. By default, the referred date
is displayed.

YES | NO (REFLIST)
This parameter controls whether the dsname level supplied to the
corresponding LMDINIT is added to the ISPF reference list.

Return codes
These return codes are possible:

0 Normal completion.

8 Error building data set list. The error condition is described in the ISPF
system dialog variables.

10 A data set list does not exist for the list-id specified via keyword LISTID.

12 A keyword value is incorrect.

20 A severe error occurred while processing the data set list.

LMDDISP

Chapter 2. Description of the ISPF services 123

Example
The example shown in “Command invocation” is an invocation of LMDDISP
which will display the Volume view of a data set list with the Delete Data Set
Confirmation panel. The variable ID contains a data set list ID generated by the
LMDINIT service.

Command invocation
ISPEXEC LMDDISP LISTID(’id’) VIEW(VOLUME) CONFIRM(YES)

Call invocation
CALL ISPLINK(’LMDDISP ’,DSLISTID,’TOTAL ’,’NO ’);
OR

Set the program variable BUFFER to contain:
BUFFER = ’LMDDISP LISTID(’id’) VIEW(VOLUME) CONFIRM(YES)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

LMDFREE—free a data set list ID
The data set list free service (LMDFREE) removes a data set list ID (dslist ID)
generated by the data list initialize service (LMDINIT).

Command invocation format

�� ISPEXEC LMDFREE LISTID(list-id) ��

Call invocation format

�� CALL ISPLINK ('LMDFREE�', list-id); ��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
list-id

The LMDFREE service removes this dslist ID from the list of dslist IDs. The
LMDLIST and LMDFREE service cannot use the dslist ID for the remainder of
the TSO session.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

LMDDISP

124 z/OS V2R2 ISPF Services Guide

Return codes
0 Normal completion.

8 Free dslist ID failed. The error condition is described in “System variables
used to format error messages” on page 14.

10 No data set level or volume is associated with given dslist ID. LMDINIT
has not been completed.

20 Severe error; unable to continue.

Example
In this example the LMDFREE service frees a dslist ID stored in function pool
variable ID.

Command invocation
ISPEXEC LMDFREE LISTID(&ID)

Call invocation
CALL ISPLINK (’LMDFREE ’, ID);
OR

Set the program variable BUFFER to contain:
BUFFER = ’LMDFREE LISTID(&ID)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

LMDINIT—initialize a data set list
The LMDINIT service generates a data set list ID for a given data set level or
volume or both. A dialog uses the dslist ID to obtain a list of data sets and data set
information from the data set list service (LMDLIST). The LMDINIT service is
similar to the function provided by the LMINIT service.

To use LMDINIT, you must specify:
v A data set level or volume or both
v The name of the variable for LMDINIT to place the new dslist ID.

Each use of the LMDINIT service must eventually be followed by the LMDFREE
service to release the dslist ID and the data set list storage space.

Command invocation format

�� ISPEXEC LMDINIT LISTID(dslist-id-var) LEVEL(dsname-level)
VOLUME(volume-serial)

��

Call invocation format

�� CALL ISPLINK ('LMDINIT�' ,dslist-id-var ,
dsname-level

, �

LMDFREE

Chapter 2. Description of the ISPF services 125

�
volume-serial

); ��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
dslist-id-var

The name of the ISPF function pool variable that stores the dslist ID of the
data set list. The LMDINIT service always generates a unique dslist ID. The
dslist ID is an input variable to the other library access services that work with
data sets, and is an output parameter from the LMDINIT service. The
maximum length for the dslist ID is 8 characters.

To invoke the service, you must specify the dslist ID variable name and Level,
Volume, or both.

In the LMDINIT service, dslist-id-var is the name of the variable that stores the
data ID (for example, LISTID(DDVAR)). When you use the dslist ID keyword
with other services, you must pass the value of the variable (for example,
LISTID(&DDVAR)).

dsname-level
You may use this value to specify the level or levels of data sets displayed
with the dslist ID. The dsname-level is a string containing valid TSO data set
name qualifier patterns, separated by periods ('.'). You can use asterisks and
percent signs as wildcards in the qualifiers. When the Call Invocation format
using the ISPLINK interface is used, the dsname-level parameter supports
system symbols. The LMDINIT service does not select data sets with fewer
levels than the dsname-level. You may also use an optional data set list exit to
control which data sets are included in the list.

volume-serial
Use this value to specify the volume serial of the VTOC that ISPF will use to
generate the list of data sets. When the Call Invocation format using the
ISPLINK interface is used, the volume-serial parameter supports system
symbols. This field has the same restrictions and syntax as the Volume field
under ISPF, option 3.4. See the z/OS V2R2 ISPF User's Guide Vol II for a
complete description.

Return codes
0 Normal completion. LMDINIT returns a unique dslist ID in the variable

specified in keyword LISTID.

8 The dslist ID was not created; the error condition is described in “System
variables used to format error messages” on page 14.

12 A keyword value is incorrect.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Examples
Here are some examples of the LMDINIT service:

LMDINIT

126 z/OS V2R2 ISPF Services Guide

Example 1:
In this example the LMDINIT service generates a dslist ID for a data set list
containing only the data sets in volume APL001. The LMDINIT service places the
dslist ID in variable VARNAME in the ISPF function pool.

Command invocation:
ISPEXEC LMDINIT LISTID(VARNAME) VOLUME(APL001);

Call invocation:
DCL DSVAR CHAR(8)
CALL ISPLINK (’VDEFINE ’, ’DSVAR ’, DSVAR, ’CHAR ’,L8);

CALL ISPLINK (’LMDINIT ’, ’DSVAR ’, ’ ’, ’APL001 ’);

OR

Set the program variable BUFFER to contain:
BUFFER = ’LMDINIT LISTID(VARNAME) VOLUME(APL001)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

Example 2:
In this example the LMDINIT service generates a dslist ID for a data set list
containing only the data sets with the first level qualifier “PROD” and a second
level qualifier starting with “ABC”.

Command invocation
ISPEXEC LMDINIT LISTID(VARNAME) LEVEL(PROD.ABC*);

Call invocation
DCL DSVAR CHAR(8)
CALL ISPLINK (’VDEFINE ’, ’DSVAR ’, DSVAR, ’CHAR ’,L8);

CALL ISPLINK (’LMDINIT ’, ’DSVAR ’, ’PROD.ABC* ’);

OR

Set the program variable BUFFER to contain:
BUFFER = ’LMDINIT LISTID(VARNAME) LEVEL(PROD.ABC*)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

Call invocation
In a CLIST, define the variable DSNLVL to contain a data set prefix of SYS2, and
the second qualifier to that of the sysplex on which the command is executed.
SET DSNLVL = SYS2.&&SYSPLEX
ISPEXEC VSYM (DSNLVL)

When executed on a system that is a member of a sysplex named SYSPLEX1, the
resulting value of DSNLVL is SYS2.SYSPLEX1.

The same example in REXX is:

LMDINIT

Chapter 2. Description of the ISPF services 127

DSNLVL = ’SYS2.&SYSPLEX’
address "ISPEXEC"
"VSYM (DSNLVL)"

Example 3:
In this example the LMDINIT service generates a dslist ID for a data set list
containing only the second most recent generation within the generation data
group “PROD.GDG”.

Command invocation
ISPEXEC LMDINIT LISTID(VARNAME) LEVEL(PROD.GDG(-1));

Call invocation
DCL DSVAR CHAR(8)
CALL ISPLINK (’VDEFINE ’, ’DSVAR ’, DSVAR, ’CHAR ’,L8);

CALL ISPLINK (’LMDINIT ’, ’DSVAR ’, ’PROD.GDG(-1)’);

OR

Set the program variable BUFFER to contain:
BUFFER = ’LMDINIT LISTID(VARNAME) LEVEL(PROD.GDG(-1))’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

LMDLIST-list data sets
The data set list service (LMDLIST) generates and uses an internal list of data set
names associated with a unique data set list ID (dslist ID) obtained from the
LMDINIT service.

The names in the internal list can be passed to a dialog with data set information
(if specified) using two options:
v The LIST option returns the information one name at a time through the

function pool variables.
v The SAVE option writes the names and information to a data set.

The internal list is not dynamic. Data sets created after the invocation of the
LMDINIT service will not added to the list. To update the list to include new data
set names, use the LMDFREE service to release the current dslist ID and reissue
the LMDINIT and LMDLIST services, or reissue the LMDINIT and LMDLIST
services using a different dslist ID.

Command invocation format

�� ISPEXEC LMDLIST LISTID(dslist-id)
LIST

OPTION(FREE)
SAVE
SAVEC
TOTALS

�

LMDINIT

128 z/OS V2R2 ISPF Services Guide

|
|
|
|

|
|

|
|
|
|
|
|
|

|

|

|
|

|

|

�
DATASET(dataset-var) NO

STATS(YES)
PRT

GROUP(group)
�

�
NO

STATUS(YES)

��

Call invocation format

�� CALL ISPLINK ('LMDLIST�' , dslist-id ,
'LIST����'
'�'
'FREE����'
'SAVE����'
'SAVEC���'
'TOTALS��'

, �

� dataset-var
'�'

,
'NO������'
'�'
'YES�����'
'PRT�����'

, group
'�'

,
'NO '
'�'
'YES '

); ��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
dslist ID

A data set list ID associated with a data set name level or volume or both by
the LMDINIT service. For information about the data set level and how data
set names are included in the data set list see “LMDINIT—initialize a data set
list” on page 125.

LIST|FREE|SAVE|SAVEC|TOTALS
These options determine whether the LMDLIST service returns the names on
the internal list to the dialog, frees the storage used by the list, writes the list
to a data set, or returns the number of total tracks and the number of all data
sets in the list in dialog variables ZDLSIZET and ZDLDST in the function pool.

LIST When you use the LMDLIST LIST option for the first time, the
LMDLIST service generates an internal list. If you initialize the
dataset-var to blanks, the first name in the internal list is returned. If
you set the dataset-var to a data set name, that data set name is
returned in dataset-var. If the LMDLIST service does not find the
named data set the next data set in the list is returned. Each time you
use the LMDLIST service with the LIST option it returns the next name
from the internal list until it reaches the end of data. The LMDLIST
service only includes the data set names meeting the criteria you
specify at the time you invoke the LMDINIT service.

FREE The FREE option releases the storage associated with the data set list.
Any use of the LMDLIST service with the LIST option must eventually
be followed by the LMDLIST service with the FREE option.

LMDLIST

Chapter 2. Description of the ISPF services 129

SAVE The SAVE option writes all data set names associated with the dslist ID
to a data set. The name of the data set is determined by the presence
and value of the group parameter. You cannot use the SAVE option
after the use of the LIST option without first invoking the LMDLIST
FREE option.

SAVEC
The SAVEC option is the same as the SAVE option and also requests to
have the catalog name associated with each data set written to the
output data set. The catalog name will not be written if a value for the
volume-serial parameter is passed on the LMDINIT call.

TOTALS
The TOTALS option returns the number of total tracks and the number
of all data sets from the internal list into these dialog variables in the
function pool without writing the list to a data set:

ZDLSIZET
Total number of tracks of all data sets in the list.

ZDLDST
Total number of data sets in the list.

This information is also provided with options SAVEC and SAVE when
the STATS parameter is set to YES or PRT.

As processing time increases depending on the size of the data set list
when either the STATS or the total tracks are collected, the progress of
the data collection can be displayed in a pop-up panel by selecting the
option STATUS.

dataset-var
The LMDLIST service uses this variable to establish a position in the list. To
start at the beginning of the list set the dataset-var to blanks. To start at a
specific data set in the list set the dataset-var to the name of the data set. If the
LMDLIST service does not find the data set you specify, it returns the next
data set in the list.

YES|NO|PRT (STATS)
Use the STATS parameter with the LMDLIST service LIST and SAVE options.
The default is STATS(NO). If you specify STATS(PRT) together with the SAVE
or SAVEC option and you write the data set list to the ISPF LIST dataset, a
total tracks header line is printed at the beginning of the data set list, showing
the total number of datasets in the list and the total number of tracks of all
datasets in the list. If you specify STATS(YES) or STATS(PRT), the LMDLIST
service provides statistical information with the data set names in these dialog
variables in the function pool or prints the statistical information to the data
set:

Table 7. List of dialog variables containing information about a data set
Variable Description
ZDLVOL Volume serial.
ZDLDEV Device type.
ZDLDSORG Data set organization.
ZDLRECFM Record format.
ZDLLRECL Logical record length.
ZDLBLKSZ Block size.
ZDLSIZE Data set size in tracks.
ZDLSIZEX Data set size in tracks, long format (12 bytes).
ZDLUSED Percentage of used tracks or pages (PDSE).

LMDLIST

130 z/OS V2R2 ISPF Services Guide

Table 7. List of dialog variables containing information about a data set (continued)
Variable Description
ZDLEXT Number of extents used.
ZDLEXTX Number of extents used, long format (5 bytes).
ZDLCDATE Creation date.
ZDLEDATE Expiration date.
ZDLRDATE Date last referenced.
ZDLMIGR Whether the data set is migrated (YES or NO) based on the value of the

VOLUME_OF_MIGRATED_DATA_SETS keyword in the ISPF
configuration table. If the volume name of the data set matches the
value of VOLUME_OF_MIGRATED_DATA_SETS, ZDLMIGR is set to
YES, otherwise it is set to NO.

ZDLDSNTP Dsname type (PDS, LIBRARY, or ' ').
ZDLSPACU Space units.
ZDLMVOL Whether the data set is multivolume (Y) or not (N).
ZDLCATNM Name of the catalog in which the data set was located.
ZDLOVF Space overflow indicator (YES or NO).
ZDLEATR Extended attribute indicator.
ZDLCJOBN Create jobname.
ZDLCSTPN Create stepname.
ZDLDSNV Data set version.
ZDLNGEN Maximum number of generations

Note: ISPF cannot calculate reliable space utilization values for BDAM data
sets. Therefore, the LMDLIST service returns question marks (?) in variables
that contain space utilization data when reporting on BDAM data sets.

group
This 8-character value specifies the group name of the data set that the
LMDLIST service writes to when you use the SAVE option. The entire name of
the data set is userid.group.DATASETS if your userid and TSO data set name
are the same, otherwise it is prefix.userid.group.DATASETS. If you do not specify
a group name, the LMDLIST service writes to the ISPF list data set.

Note: LMDLIST service allocates the output data set with DISP=OLD for the
SAVE option.

YES | NO (STATUS)
This parameter controls, whether a pop-up panel with a progress bar is
displayed during the collection of dataset information. This parameter is only
applicable for options SAVE and SAVEC with STATS(YES) or STATS(PRT) or
option TOTALS.

Note: The progress panel will only be displayed if the data set list contains at
least 50 data sets.

Return codes
These return codes are possible:

0 One of these:
v LIST option - Normal completion. The name of next data set in the list is

returned in the variable specified in keyword DATASET. Data set
statistics are returned, if requested.

v FREE option - Normal completion. The internal storage associated with
the data set list has been freed.

LMDLIST

Chapter 2. Description of the ISPF services 131

||

v SAVE option - Normal completion. The data set list has been
successfully written to a data set. The total number of tracks and
datasets are returned to dialog variables in the function pool, if
requested.

v SAVEC option - Normal completion. The data set list has been
successfully written to a data set. The total number of tracks and
datasets are returned to dialog variables in the function pool, if
requested.

v TOTALS option - Normal completion. No list has been written to a
dataset. The total number of tracks and datasets are returned into dialog
variables in the function pool.

4 No data sets matched specified search criteria (the values for keywords
LEVEL and VOLUME on the LMDINIT service).

8 End of data set list.

10 The data set list does not exist for dslist ID.

12 A keyword value is incorrect.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Examples
Here are some examples of the LMDLIST service:

Example 1:
In this example the LMDLIST service LIST option generates a list of all data set
names. The variable ID contains a dslist ID generated by the LMDINIT service.
The LMDLIST service places the first name in the variable DSNAME.

Command invocation:
SET &DSNAME =
ISPEXEC LMDLIST LISTID(&ID) STATS(YES) DATASET(DSNAME) OPTION(LIST)

Call invocation:
DSNAME = ’ ’;
CALL ISPLINK (’LMDLIST ’, ID,’LIST ’,DSNAME,’YES ’);
OR

Set the program variable BUFFER to contain:
DSNAME = ’ ’;
BUFFER = ’LMDLIST LISTID(&ID) OPTION(LIST) DATASET(DSNAME)

STATS(YES)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

Example 2:
In this example, the LMDINIT service creates a LISTID based on the data set name
level ISPFSVC. The LMDLIST service saves the list into a data set called
userid.ISPFSVC.DATASETS. The GROUP parameter told the LMDLIST service to
use ISPFSVC in the data set name of the saved list. The LMDFREE service frees the
LISTID.

LMDLIST

132 z/OS V2R2 ISPF Services Guide

/* REXX exec to create a list of data sets */
address ispexec

’LMDINIT LISTID(LISTIDV) LEVEL(ISPFSVC)’
If rc = 0 Then

do
’LMDLIST LISTID(’listidv’) OPTION(SAVE) GROUP(ISPFSVC)’
’LMDFREE LISTID(’listidv’)’

end

Example 3:
In this example, the LMDINIT service creates LISTID of the current user's data
sets, and blanks out the data set name variable to prepare for the LMDLIST
service. The LMDLIST service is called from within a loop, so that all data sets that
match the criteria from the LMDINIT service are returned, one at a time. The
LMDLIST service sets the ZDLDSORG variable, which returns PO if the data set is
partitioned. For a partitioned data set, the LMINIT service is called, so that the
data set can be compressed with the LMCOMP service. CONTROL ERRORS
RETURN is set before the LMCOMP service so that if there is a compression error,
the exec continues to run. CONTROL ERRORS CANCEL is set after the compress
so that the exec halts if there is an error on any of the other services. LMFREE
frees the data id, and LMDFREE frees the LISTID.
/* REXX exec to loop through a user’s data sets and compress PDSes */
address ispexec
"LMDINIT LISTID(lidv) LEVEL("userid()")"
If rc = 0 Then

do
dsvar = " ";
keepon = "yes"
do until keepon = "no "

"LMDLIST LISTID("lidv") OPTION(list) dataset(dsvar) stats(yes)"
If rc ^= 0 Then

Do
if rc ^= 8 then

say "lmdlist failed with rc = " rc
keepon = "no "

End
else

do;
if ZDLDSORG = "PO" then

do;
"LMINIT DATAID(daid) DATASET(’"dsvar"’) ENQ(EXCLU)"
if rc = 0 then

do
say "compressing "dsvar
"CONTROL ERRORS RETURN"
"LMCOMP DATAID("daid")"
"CONTROL ERRORS CANCEL"
"LMFREE DATAID("daid")"

end
else

say "lminit failed with rc = "rc
end;

end
end
"LMDFREE LISTID("lidv")"

end

LMERASE—erase a data set
The LMERASE service deletes an entire ISPF library or an MVS partitioned data
set. All members of the data set are deleted and all statistics are erased. The data
set name used must be the cataloged name, not an alias data set name.

LMDLIST

Chapter 2. Description of the ISPF services 133

Command invocation format

�� ISPEXEC LMERASE
PROJECT(project) GROUP(group) TYPE(type)

�

�
NO

PURGE(YES)
DATASET(dataset) VOLUME(volume)

�

�
PASSWORD(password)

��

Call invocation format

�� CALL ISPLINK('LMERASE�' , project
'�'

, group
'�'

, type
'�'

�

�
'NO������'

, '�'
'YES�����'

, dataset
'�'

, volume
'�'

, password);
'�'

��

or

�� CALL ISPEXEC (buf-len, buffer); ��

You must specify the data set (ISPF library, or MVS partitioned or sequential data
set) as a three-level qualified name, or as a 44-character data set name string. If
both are specified, ISPF will use the data set name string. If neither is specified, an
error message is displayed.

Parameters
project

The highest-level qualifier in the specification of an ISPF library or of an MVS
data set with a three-level qualified data set name. The maximum length of
this parameter is 8 characters.

group
The second-level qualifier in the specification of an ISPF library or of an MVS
data set with a three-level qualified data set name. The maximum length of
this parameter is 8 characters.

type
The third-level qualifier in the specification of an ISPF library or of an MVS
data set with a three-level qualified data set name. The maximum length of
this parameter is 8 characters.

YES|NO
If YES is specified, LMERASE deletes the data set regardless of its expiration
date. If NO is specified, LMERASE deletes the data set only if its expiration
date has passed.

dataset
The name of an existing MVS partitioned or sequential data set. A member

LMERASE

134 z/OS V2R2 ISPF Services Guide

name or pattern cannot be included if the name is that of a partitioned data
set. The maximum length of this parameter is 46 characters, with 2 characters
for a beginning and ending single quotation mark, and 44 characters for the
data set name. If the single quotation marks are omitted, the users data set
prefix from the TSO profile is automatically appended to the front of the data
set name.

volume
The serial number of the DASD volume on which the data set resides. This
parameter is associated with the data set parameter, but is required only if the
data set is not cataloged. If the volume parameter is specified but the data set
parameter is not, the volume is ignored. The maximum length of this
parameter is 6 characters.

password
The MVS password of the data set. This parameter is required only if the data
set is password-protected. Do not specify a password for RACF-protected data
sets. The maximum length of this password is 8 characters.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return codes
These return codes are possible:

0 Normal completion.

8 One of these:
v Data set is not cataloged or other allocation failure.
v Data set delete failed.
v Data set name is an alias.
v Expiration date not expired and PURGE parameter omitted
v No data set specified as input
v PROJECT specified, but GROUP or TYPE not specified.

12 Expiration date not expired and PURGE(NO) specified.

20 Severe error; unable to continue.

Example
This example invokes LMERASE to delete a data set with a three-level qualified
data set name that has DEPT877 as its highest-level qualifier, PRIVATE as its
second-level qualifier, and CLIST as its third-level qualifier.

Command invocation
ISPEXEC LMERASE PROJECT(DEPT877) +

GROUP(PRIVATE) +
TYPE(CLIST) +
PURGE(YES)

LMERASE

Chapter 2. Description of the ISPF services 135

Call invocation
CALL ISPLINK(’LMERASE ’,’DEPT877 ’,

’PRIVATE ’,
’CLIST ’,
’YES ’);

OR

Set the program variable BUFFER to contain:
BUFFER = ’LMERASE PROJECT(DEPT877)

GROUP(PRIVATE)
TYPE(CLIST)
PURGE(YES)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

LMFREE—free data set from its association with data ID
The LMFREE service removes a data ID that was generated by the LMINIT service.
The ISPF library, concatenated ISPF libraries, or data set is no longer associated
with the specified data ID. If the data set is still open, LMFREE closes it.

After LMFREE is invoked, that data ID can no longer be used to identify the data
set for processing by other ISPF services that require data IDs. If the data ID is not
allocated by using the DDNAME parameter in LMINIT, the allocation for the data
set is also freed. If the data ID represents a concatenated set of ISPF libraries, the
data sets are freed and are no longer concatenated.

For each LMINIT invocation, you should invoke a matching LMFREE service when
the data ID is no longer needed. Otherwise, the ISPF library or data set associated
with the data ID is not released until ISPF terminates.

If you modify the data sets associated with a data ID, then you must invoke the
LMFREE and LMINIT services for the data ID before processing the data sets with
another service. Failure to update the directory blocks associated with the data ID
may cause I/O errors.

Command invocation format

�� ISPEXEC LMFREE DATAID(data-id) ��

Call invocation format

�� CALL ISPLINK('LMFREE��',data-id); ��

or

�� CALL ISPEXEC (buf-len, buffer); ��

LMERASE

136 z/OS V2R2 ISPF Services Guide

Parameters
data-id

The data ID associated with the data set to be released. The data ID has been
generated by the LMINIT service. The maximum length of this parameter is 8
characters.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return codes
These return codes are possible:

0 Normal completion.

8 Free data ID failed; the error condition is described in “System variables
used to format error messages” on page 14.

10 No ISPF library or data set is associated with the given data ID; that is,
LMINIT has not been completed.

20 Severe error; unable to continue.

Example
This example invokes the LMFREE service to release the data set associated with
the data ID in variable DDVAR.

Command invocation
ISPEXEC LMFREE DATAID(&DDVAR)

Call invocation
CALL ISPLINK(’LMFREE ’,DDVAR);
OR

Set the program variable BUFFER to contain:
BUFFER = ’LMFREE DATAID(&DDVAR)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

LMGET—read a logical record from a data set
The LMGET service reads one logical record from the data set associated with the
given data ID. Completion of the LMINIT and LMOPEN services for the data set is
required before LMGET is invoked.

If the data to be processed is a sequential data set, the first LMGET reads the first
logical record. Later invocations read successive logical records; that is, the second
invocation reads the second logical record, the third invocation reads the third
logical record, and so on.

LMFREE

Chapter 2. Description of the ISPF services 137

If the data is an ISPF library or MVS partitioned data set, previous completion of
the LMMFIND service is required in addition to completion of LMINIT and
LMOPEN. The LMGET service reads from the last member referred to by the
LMMFIND service in the data sets being processed. Thus, if LMMFIND is issued
referencing member A, LMGET reads from member A. If another LMMFIND is
issued referencing member B, LMGET reads from member B, not member A.

When MODE(MULTX) is used, the read operation occurs in segments (rather than
in single records), with each segment comprising multiple records. Each record is
prefixed by a 2-byte binary integer field containing its length. The maximum size
of each segment returned is 32 000 bytes. LMGET returns data to the dataloc-var
in this format:

The data read is always unpacked. If the data set contains packed data, LMGET
unpacks the data.

Command invocation format

�� ISPEXEC LMGET DATAID(data-id) MODE(MOVE)
LOCATE
INVAR
MULTX

DATALOC(dataloc-var) �

� DATALEN(datalen-var) MAXLEN(max-length) ��

Call invocation format

�� CALL ISPLINK ('LMGET���' ,data-id , '�'
='MOVE����'
'LOCATE��'
'INVAR���'
'MULTX���'

,dataloc-var �

� ,datalen-var ,max-length); ��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
data-id

The data ID associated with the data set to be read. The data ID has been
generated by the LMINIT service. The maximum length of this parameter is 8
characters.

MOVE|LOCATE|INVAR|MULTX
Whether the data is to be moved, located, or stored into an ISPF dialog
variable, and whether the data should be read in single records (default) or in

+------+--------------+------+--------------+------+--------------+
|len | record |len | record |len | record |
+------+--------------+------+--------------+------+--------------+
<----- this length is returned in datalen-var ---->

LMGET

138 z/OS V2R2 ISPF Services Guide

segments containing multiple records (MULTX). A calling program function
can specify any mode, with information being passed through the data location
variable. A command dialog can use INVAR and MULTX modes, with data
being returned to the command in the data location variable.

dataloc-var
The name of the data location variable. In MOVE mode, the variable contains a
binary virtual storage address at which the data read by LMGET is to be
stored. In LOCATE mode, the address of the data read by LMGET is placed in
the data location variable. In INVAR and MULTX modes, the data read by
LMGET is itself placed in the data location variable. The maximum length of
this parameter is 8 characters.

datalen-var
The name of the variable into which LMGET stores the actual length of the
record read. In MULTX mode ISPF stores the length of data returned in the
datalen-var. The maximum length of this parameter is 8 characters.

max-length
A fullword binary integer containing the maximum record length to be read in
bytes. This parameter must be a nonzero positive integer value. In MOVE
mode, the value is the maximum number of bytes of data to be moved. In
INVAR mode, the value is the maximum number of bytes of data to be stored
in the data location variable. The value is not changed by LMGET in either
mode. In MULTX mode, the value is the maximum number of bytes to be
stored from each record read, to make up the segment that will be stored in
the data location variable. The parameter is ignored in LOCATE mode. If the
max-length specification causes a DBCS character string to be divided in the
middle, the result may be unpredictable.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return codes
These return codes are possible:

0 Normal completion.

8 End-of-data set condition; no message formatted.

10 No ISPF library or data set associated with the given data ID; that is,
LMINIT has not been completed.

12 One of these:
v The data set is not open or is not open for input.
v An LMMFIND was not done for a partitioned data set.
v The parameter value is invalid.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

LMGET

Chapter 2. Description of the ISPF services 139

Example 1
This example invokes the LMGET service to read a record from the data set
associated with the data ID in variable DDVAR, in INVAR mode, with LOCVAR as
the data location variable, LENVAR as the actual record length variable, and 80
bytes as the maximum record length.

Command invocation
ISPEXEC LMGET DATAID(&DDVAR) MODE(INVAR) DATALOC(LOCVAR) +

DATALEN(LENVAR) MAXLEN(80)

Call invocation
MAXLEN=80;
CALL ISPLINK(’LMGET ’,DDVAR,’INVAR ’,’LOCVAR ’,’LENVAR ’,MAXLEN);

MAXLEN is a fullword integer variable.
OR

Set the program variable BUFFER to contain:
BUFFER = ’LMGET DATAID(&DDVAR) MODE(INVAR) DATALOC(LOCVAR)

DATALEN(LENVAR) MAXLEN(80)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

Example 2
This example initializes and opens an input and an output data set, using LMINIT
and LMOPEN respectively. The exec loops through the all the records of the input
data set using the LMGET service. Each record of the input data set is stored into
the variable srchline. The variable srchline is parsed to find a member name. The
string 'SELECT ' followed by the member name is stored into a variable called
selline which is added to the output data set, using the LMPUT service. The input
and output data sets are closed and freed using LMCLOSE and LMFREE.
/* rexx ***/
/* */
/* Member: SETSRCH */
/* */
/* Purpose: To create a srchfor.stmts data set that contains */
/* only those members with a certain string. For example, */
/* if both CLIST and REXX execs are stored in the same */
/* library, but you only want to search the REXX members */
/* search the library for the word rexx, with the options */
/* listed below to create srchfor.list. Use the resulting */
/* statements data set as input to the next search. */
/* */
/* Setup: Create the srchfor output using option 3.15 with */
/* process options: */
/* LMTO NOSUMS NOPRTCC */
/* to create an output listing data set called */
/* userid.srchfor.list without a summary section or page */
/* dividers. */
/* */
/* Input: userid.SRCHFOR.LIST (as created in setup). */
/* */
/* Output: userid.SRCHFOR.STMTS containing a SELECT statement */
/* for each member to be searched. */
/* */
/**/
address ispexec

LMGET

140 z/OS V2R2 ISPF Services Guide

’lminit dataid(srchout) dataset(srchfor.list) enq(shr) ’
if rc = 0 then

do
’lmopen dataid(’srchout’) option(input)’
if rc = 0 then

do
’lminit dataid(srchstmt) dataset(srchfor.stmts) enq(exclu)’
if rc = 0 then

do
’lmopen dataid(’srchstmt’) option(output)’
if rc = 0 then

do
done = ’n’
datavar = 0
linenum = 1
do while done = ’n’

’lmget dataid(’srchout’) mode(invar) dataloc(srchline)
datalen(datavar) maxlen(132)’

if rc = 0 then
do

linenum = linenum + 1
if linenum > 5 then /* skip over header */

do
parse var srchline memname linesfnd linesrch
if memname /= ’ ’ then

do
selline = ’SELECT ’ memname
’lmput dataid(’srchstmt’) mode(invar),

dataloc(selline) datalen(80)’
if rc > 0 then

done = ’y’
end

end
end

else
done = ’y’

end
’lmclose dataid(’srchstmt ’)’

end
’lmfree dataid(’srchstmt ’)’

end
’lmclose dataid(’srchout ’)’

end
’lmfree dataid(’srchout ’)’

end
exit

Example 3 (MULTX)
This REXX example invokes the LMGET service to process a data set in MULTX
mode, returning blocks of data in segments no larger than 32 000 bytes. The data
set has a record length of 80 bytes in this example, but for variable data the length
will vary and must be calculated as shown:

/* REXX */
ADDRESS ISPEXEC;
’LMGET DATAID(’DDVAR’) MODE(MULTX) DATALOC(REC) DATALEN(DLEN) ,
MAXLEN(80)’
GETRC = RC
DO FOREVER

INDEX = 1
DO WHILE INDEX < DLEN

LEN = SUBSTR(REC,INDEX,2)
LEN = C2D(LEN)
IF LEN > 0 THEN CALL process_record
INDEX = INDEX + LEN + 2

END

LMGET

Chapter 2. Description of the ISPF services 141

IF GETRC = 0 THEN DO
’LMGET DATAID(’DDVAR’)’ MODE(MULTX) DATALOC(REC) ,
DATALEN(LEN) MAXLEN(80)’
GETRC = RC

END
ELSE LEAVE

END

LMINIT—generate a data ID for a data set
The LMINIT service allows the dialog to associate a data ID with a specified ISPF
library, concatenation of ISPF libraries or MVS partitioned data sets, or an MVS
partitioned or sequential data set. The data ID is generated by LMINIT and can be
used to identify the data set for processing by other library access services or the
BROWSE or EDIT service. If the specified data set exists but has not been
allocated, the LMINIT service allocates the data set. If two or more existing ISPF
libraries are specified, the LMINIT service concatenates the libraries.

Note: The LMINIT service does not support data sets created by a method that
does not set the format one DSCB field (DS1DSORG).

The input to the LMINIT service defines the physical and logical characteristics of
the data set. This simplifies the invocation of the other library access services by
supplying the information needed to invoke the service for a given data set. For
instance, the dialog supplies the information required by the input fields on the
ISPF View Entry Panel to LMINIT. Later invocations of the BROWSE service with
that data set are made much simpler by using the data ID generated by the
LMINIT service.

The LMINIT service must be completed before LMOPEN can be used. Otherwise,
the data set cannot be opened for processing. If LMINIT is issued with an enqueue
(ENQ) of SHRW and LMOPEN is issued with the OUTPUT option, it is essential
that an LMCLOSE is issued when the dialog has finished processing the data set,
since the DASD volume is reserved until LMCLOSE is invoked.

You can use the LMQUERY service to find out how the LMINIT parameters are
set.

For each LMINIT invocation, you should invoke a matching LMFREE service. The
LMFREE service removes the data ID generated by LMINIT. Invoke the LMFREE
service when the data ID is no longer needed. Otherwise, the ISPF library or data
set associated with the data ID is not released until ISPF terminates.

If you modify the data sets associated with a data ID, then you must invoke the
LMFREE and LMINIT services for the data ID before processing the data sets with
another service. Failure to update the directory blocks associated with the data ID
may cause I/O errors.

For example, if you use a service like LMCOPY or LMMOVE to modify a data ID
that was defined by the LMINIT service, and the modified resource is needed for
other services, then the data ID that references the modified resource must first be
freed with LMFREE, then re-allocated with LMINIT. In more specific terms, say
you perform an LMMOVE operation to move data from DATA-ID(A) to
DATA-ID(B). Then you immediately use the LMMOVE service to move data from
DATA-ID(B) to DATA-ID(C). The second operation (from B to C) might result in an
I/O error. To correctly complete this task, make all updates to DATA-ID(B), free
DATA-ID(B) with the LMFREE service, then use the LMINIT service for

LMGET

142 z/OS V2R2 ISPF Services Guide

DATA-ID(B) so that the changes made to DATA-ID(B) can be referenced by other
services. Any time this initialization is not done on a modified resource and
references to that resource are made, an I/O error might occur.

Command invocation format

�� ISPEXEC LMINIT DATAID(data-id-var) PROJECT options
DATASET(dsname)
DDNAME(ddname)

VOLUME(serial)
�

�
PASSWORD(password) SHR

ENQ(EXCLU)
SHRW
MOD

ORG(org-var)
��

PROJECT options:

PROJECT(project) GROUP1(group1) TYPE(type)
GROUP2(group2) GROUP3(group3)

�

�
GROUP4(group4)

Call invocation format

�� CALL ISPLINK ('LMINIT��' , data-id-var �

� '�' , '�' , '�' , '�' , '�' , '�' , '�' , ddname
'�' , '�' , '�' , '�' , '�' , '�' , ,dsname , '�'
,project,group1 , group2 , group3 , group4 ,type , '�' , '�'

'�' '�' '�'

, serial
'�'

�

� , password
'�'

'SHR�����'
, '�'

'EXCLU���'
'SHRW����'
'MOD�����'

, org-var);
'�'

��

or

�� CALL ISPEXEC (buf-len,buffer); ��

You must specify the data set (ISPF library, or MVS partitioned or sequential data
set) as a ddname, a dsname, or a three-level qualified name. The search sequence
LMINIT uses is ddname, then dsname, then the three-level qualified name. If
LMINIT finds the name it is looking for, it uses that name. Otherwise, it looks for
the next type of name in the sequence. If there is no three-level qualified name,
LMINIT issues an error message.

LMINIT

Chapter 2. Description of the ISPF services 143

|||

Parameters
data-id-var

The name of the variable that will store the data ID to be associated with the
data set. The LMINIT service always generates a unique data ID. The data ID
is an input parameter to most of the other library access services, and
optionally to the BROWSE and EDIT services, but is an output parameter from
the LMINIT service. The data ID length is 8 characters. Therefore, the
maximum length of this parameter is 8 characters.

To invoke the service, you must specify the data ID variable name and an ISPF
library name (project, group, and type), a dsname, or a ddname.

In the LMINIT service, data-id-var is the name of the variable that holds the
data ID (for example, DATAID(DDVAR)). When you use the data ID keyword
with other services, you must pass the value of the variable (for example,
DATAID(&DDVAR)). The Library search order is from the lowest (group1) to
the highest (group4). The search for a member stops when the first matching
member name is located.

project
The highest-level qualifier in the specification of an ISPF library or MVS
three-level qualified data set. This parameter is required if neither the dsname
nor the ddname parameter is specified. The maximum length of this parameter
is 8 characters.

group1
The second-level qualifier in the specification of an ISPF library or MVS
three-level qualified data set. This parameter is required if neither the dsname
nor ddname parameter is specified. The maximum length of this parameter is 8
characters.

group2
Continues the second-level qualifier. It is not required, but if present it
represents an ISPF library in a concatenation sequence. The maximum length
of this parameter is 8 characters.

group3
Continues the second-level qualifier. It is not required, but if present it
represents an ISPF library in a concatenation sequence. The maximum length
of this parameter is 8 characters.

group4
Continues the second-level qualifier above. It is not required, but if present it
represents an ISPF library in a concatenation sequence. The maximum length
of this parameter is 8 characters.

type
The third-level qualifier in the specification of an ISPF library or MVS
three-level qualified data set. This parameter is required if neither the dsname
nor the ddname parameter is specified. The maximum length of this parameter
is 8 characters.

dsname
The name of an existing MVS partitioned or sequential data set. A member
name or pattern cannot be included in the dsname of a partitioned data set.
The maximum length of this parameter is:
v For fully qualified data sets, 46 characters, with 2 characters for a beginning

and ending single quotation mark, and 44 characters for the data set name.

LMINIT

144 z/OS V2R2 ISPF Services Guide

v If the single quotation marks are omitted, the user's data set prefix from the
TSO profile is automatically appended to the front of the data set name. The
length of the data set name specified plus the length of the TSO prefix and
the separator "." must not exceed 44 characters.

ddname
The data set definition name of a data set that is already allocated to the TSO
user before invocation of the LMINIT service. This can be done by using the
TSO ALLOCATE command or MVS job control language (JCL). The data set
must be either partitioned or sequential.

If the ddname is allocated to one or more partitioned data sets, member names
cannot be included. LMINIT allows up to 16 concatenated data sets.

Note: If the ddname is allocated to a multivolume data set, LMINIT is not
supported. Do not try to LMINIT a multivolume data set by ddname.

Sequential data sets must be allocated as either OLD, SHR, NEW, or MOD. If
the ddname is allocated as NEW, the record format, data set organization,
record length, and block size must be specified when the ddname is allocated.
For a partitioned data set, the number of directory blocks must also be
specified when the ddname is allocated. The maximum length of this
parameter is 8 characters.

serial
The serial number of the DASD volume on which the data set resides. This
parameter is associated with the dsname parameter, but is required only if the
data set is not cataloged. The maximum length of this parameter is 6
characters. Volume serial is associated with the dsname parameter and will be
ignored when the dsname is not entered.

password
The MVS password of the data set. This parameter is required only if the data
is password-protected. If the password is invalid, it is detected by the
LMOPEN service (see “LMOPEN—open a data set” on page 186). Do not
specify a password for RACF-protected data sets. The maximum length of this
parameter is 8 characters.

SHR|EXCLU|SHRW|MOD
The requirements for enqueuing (ENQ) the data within ISPF so that the dialog
can use it in the desired manner. This parameter is ignored if the ddname
parameter is specified.

SHR shows that the existing data can be shared; for example, it can be used by
two or more users who want only to read the data. You can specify this option
when using the INPUT option of the LMOPEN service. SHR is the default.

EXCLU shows that exclusive use of the data is required; for example, when
you want to change the data no one else can have access to it. You can specify
this option for either the INPUT or OUTPUT option of the LMOPEN service.

SHRW permits a shared write for the data. This option is used by ISPF Edit. It is
used only for a partitioned data set. In this way, more than one user can read
from the data, but members can be rewritten when necessary through an
enqueue or dequeue used by Edit. Edit can now have the data ID open for
INPUT and OUTPUT at the same time. A data set that is allocated with an
enqueue of SHRW can be opened for either INPUT or OUTPUT using the
LMOPEN service.

MOD shows that more records are to be added to the end of a sequential data
set. MOD is used with the OUTPUT option of the LMOPEN service.

LMINIT

Chapter 2. Description of the ISPF services 145

org-var
The name of the variable into which the organization of the data is stored. The
variable contains “PO” if the data set is partitioned or “PS” if it is physical
sequential. If you specify a concatenated set of ISPF libraries, the organization
of the first group of the concatenated libraries is returned. The maximum
length of this parameter is 8 characters.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return codes
These return codes are possible:

0 Normal completion.

8 Data ID not created; the error condition is described in “System variables
used to format error messages” on page 14.

12 The parameter value is invalid.

16 Truncation or translation error in accessing dialog variables.

20 Severe error; unable to continue.

See “System variables used to format error messages” on page 14 for more
information about dialog variables.

Note: Data sets allocated with an XTIOT will return a “DDNAME Not Found”
message and set RC=8 if XTIOT support is not fully enabled.

Examples
Here are some examples of the LMINIT service:

Example 1:
This example invokes the LMINIT service to associate a data ID with data
concatenated from these ISPF libraries:

ISPF.TESTLIB1.PLIOPT
ISPF.TESTLIB2.PLIOPT
ISPF.TESTLIB3.PLIOPT
ISPF.TESTLIB4.PLIOPT

Store the generated data ID in variable DDVAR.

Command invocation:
ISPEXEC LMINIT DATAID(DDVAR) PROJECT(ISPF) +

GROUP1(TESTLIB1) +
GROUP2(TESTLIB2) GROUP3(TESTLIB3) +
GROUP4(TESTLIB4) TYPE(PLIOPT)

Call invocation:
DCL DDVAR CHAR (8);
CALL ISPLINK(’VDEFINE ’,’DDVAR ’,DDVAR,’CHAR ’,

LENGTH(DDVAR));

LMINIT

146 z/OS V2R2 ISPF Services Guide

CALL ISPLINK(’LMINIT ’,’DDVAR ’,’ISPF ’,
’TESTLIB1 ’,’TESTLIB2 ’,
’TESTLIB3 ’,’TESTLIB4 ’,’PLIOPT ’);

OR

Set the program variable BUFFER to contain:
BUFFER = ’LMINIT DATAID(DDVAR) PROJECT(ISPF) GROUP1(TESTLIB1)

GROUP2(TESTLIB2) GROUP3(TESTLIB3)
GROUP4(TESTLIB4) TYPE(PLIOPT)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

Example 2:
The example shown in “Command invocation” invokes the LMINIT service for a
two-level dsname called SMITH.CLIST, using dsname.

Command invocation:
ISPEXEC LMINIT DATAID(DDVAR) +

DATASET(’SMITH.CLIST’) +
ENQ(SHR)

Call invocation:
CALL ISPLINK(’LMINIT ’,’DDVAR ’,

’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,
’SMITH.CLIST’,’ ’,
’ ’,’ ’,’SHR ’);

Example 3:
The example shown in “Command invocation” invokes the LMINIT service for a
new data set, using ddname.

Command invocation:
ATTRIB MYLIST BLKSIZE(800) +

LRECL(80) RECFM(F B) +
DSORG(PS)

ALLOC DDNAME(MYDD) NEW +
SPACE(1,1) TRACKS KEEP +
USING(MYLIST)

ISPEXEC LMINIT DATAID(DDVAR) DDNAME(MYDD)

Call invocation: For this invocation, assume DDNAME(MYDD) has been
allocated to the user using JCL.
CALL ISPLINK (’LMINIT ’,’DDVAR ’,

’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,
’ ’,’MYDD ’);

LMMADD—add a member to a data set
The LMMADD service adds a member to the specified ISPF library or MVS
partitioned data set. LMMADD then updates the data set directory with
information about the member to be added. If the member already exists, the
member name entry is not added. The LMINIT with either ENQ(SHRW) or
ENQ(EXCLU), LMOPEN with OPTION(OUTPUT), and LMPUT services must be
completed before LMMADD is used.

LMINIT

Chapter 2. Description of the ISPF services 147

Command invocation format

�� ISPEXEC LMMADD DATAID(data-id) MEMBER(member-name) �

�
NO

STATS(YES)
NOENQ NO

EXT(YES)

��

Call invocation format

�� CALL ISPLINK ('LMMADD��' ,data-id ,member-name
'NO������'

, '�')
'YES�����'

�

� , 'NOENQ');
'�'

��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
data-id

The data ID associated with the data set to which a member is being added.
The data ID has been generated by the LMINIT service. The maximum length
of this parameter is 8 characters.

member-name
The member name being added to the directory. The maximum length of this
parameter is 8 characters.

YES|NO
Whether the user data area in the directory should be updated so that the
statistics of the member are stored in the format used by ISPF Edit.

If you specify YES, and the data set is partitioned and does not have
unformatted records (RECFM=U), the directory is updated with the member
statistics. At least a valid creation date (ZLCDATE) and the date of last change
(ZLMDATE) must be provided in the member statistics.

If you specify NO, statistics are not updated.

These dialog variables are used to pass statistical information from the dialog
invoking the LMMADD service:

ZLVERS
Version number; a number from 1 to 99. If no value exists for this
variable, ISPF sets the value to blanks.

ZLMOD
Modification level; a number from 0 to 99.

ZLCDATE
Creation date; a character value shown in your national format. If no
value exists for this variable, ISPF sets the value to blanks.

LMMADD

148 z/OS V2R2 ISPF Services Guide

ZLMDATE
Last change date; a character value shown in your national format. If
no value exists for this variable, ISPF sets the value to blanks.

ZLMTIME
Last change time; a character value in the format hh:mm. ZLMTIME
may also be specified as an 8-character field in the format hh:mm:ss. If
the 6th character is not a colon, or if the 7th and 8th characters (ss) are
not in the range '00' to '59', only the hour:minute specifications are
used. The seconds value is set to the current time.

ZLMSEC
Seconds value of the last change time. This is a 2-character field.

Note: If the ZLMTIME variable does not contain a seconds value and
ZLMSEC is not set, the seconds value is set to 00. If both ZLMTIME
and ZLMSEC specify a seconds value, the value in ZLMSEC is used.

ZLCNORC
Current number of records; a number from 0 to 65 535. If no value
exists for this variable, ISPF sets the value to blanks.

ZLINORC
Beginning number of records; a number from 0 to 65 535.

ZLMNORC
Number of changed records; a number from 0 to 65 535.

ZLUSER
User ID of the last user to change the given member; the user ID has a
maximum length of 7 characters.

ZLC4DATE
Creation date in 4 character year format; a character variable shown in
your national format. If no value exists for this variable, ISPF sets the
value to blanks.

ZLM4DATE
Last modified date in 4 character year format; a character variable
shown in your national format. If no value exists for this variable, ISPF
sets the value to blanks.

The preceding variables are stored in the function pool and therefore become
immediately available to command invocations. You cannot use the VGET
service to retrieve these variables, since the VGET service accesses the shared
and profile pools. Likewise, you cannot use the VPUT service to change these
variables.

NOENQ
An optional parameter that specifies that ISPF should not issue its standard
ENQ during the processing of this service. This standard ENQ consists of a
major name of SPFEDIT and a minor name of the data set name and member.
By default, ISPF will issue the ENQ unless NOENQ is specified.

EXT
When set to YES, instructs ISPF to store statistics in extended format.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

LMMADD

Chapter 2. Description of the ISPF services 149

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return codes
These return codes are possible:

0 Normal completion.

4 The directory already contains the specified name.

10 No ISPF library or MVS data set is associated with the given data ID; that
is, LMINIT has not been completed.

12 One of these:
v The data set is not open or is not open for output.
v The parameter value is invalid.
v The data set organization is invalid.
v The values for some member statistics are invalid.

14 No record has been written for the member to be added.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the LMMADD service to add member MYPROG to the data
set associated with the data ID in variable DDVAR.

Command invocation
ISPEXEC LMMADD DATAID(&DDVAR) MEMBER(MYPROG)

Call invocation
CALL ISPLINK(’LMMADD ’,DDVAR,’MYPROG ’);
OR

Set the program variable BUFFER to contain:
BUFFER = ’LMMADD DATAID(&DDVAR) MEMBER(MYPROG)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following command:
CALL ISPEXEC (BUFLEN, BUFFER);

LMMDEL—delete members from a data set
The LMMDEL service removes members matching the specified pattern from an
ISPF library or MVS partitioned data set. All directory information associated with
the member is deleted. The LMINIT and LMOPEN services must be completed
before you use the LMMDEL service. The LMINIT must be done with either the
ENQ(SHRW) or ENQ(EXCLU) option, and the LMOPEN must have been done for
OUTPUT. An LMINIT with ENQ(EXCLU) is required when MEMBER(*) is
specified.

LMMADD

150 z/OS V2R2 ISPF Services Guide

Command invocation format

�� ISPEXEC LMMDEL DATAID(data-id) MEMBER(member-name)
NOENQ

��

Call invocation format

�� CALL ISPLINK('LMMDEL��' ,data-id ,member-name) , 'NOENQ');
'�'

��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
data-id

The data ID associated with the data set from which a member is to be
deleted. The data ID has been generated by the LMINIT service. The maximum
length of this parameter is 8 characters.

member-name
The member name or pattern of the members to be deleted. An asterisk (*)
indicates that all members are to be deleted. The maximum length of this
parameter is 8 characters.

Where member-name is the name of a primary member, the primary name and
all associated alias names are deleted. Where member-name is an alias member,
only the alias name and its directory entry are deleted.

Where a member pattern has been specified for the LMMDEL service, these
rules apply:
v All primary members whose name matches the member pattern are deleted.
v All aliases that are associated with a primary member whose name matches

the member pattern are deleted, even if the alias name itself does not match
the member pattern.

v All aliases whose name matches the member pattern are deleted, even if the
alias is associated with a primary member whose name does not match the
member pattern.

NOENQ
An optional parameter that specifies that ISPF should not issue its standard
ENQ during the processing of this service. This standard ENQ consists of a
major name of SPFEDIT and a minor name of the data set name and member.
By default, ISPF will issue the ENQ unless NOENQ is specified.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

LMMDEL

Chapter 2. Description of the ISPF services 151

Return codes
These return codes are possible:

0 Normal completion.

8 The member was not found.

10 No data set is associated with the given data ID; that is, LMINIT has not
been completed.

12 One of these:
v The data set is not open or is not open for output.
v The parameter value is invalid.
v The data set organization is invalid.

20 Severe error; unable to continue.

Example
This example invokes the LMMDEL service to delete member MYPROG from the
data set associated with the data ID in variable DDVAR.

Command invocation
ISPEXEC LMMDEL DATAID(&DDVAR) MEMBER(MYPROG)

Call invocation
CALL ISPLINK(’LMMDEL ’,DDVAR,’MYPROG ’);
OR

Set the program variable BUFFER to contain:
BUFFER = ’LMMDEL DATAID(&DDVAR) MEMBER(MYPROG)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following command:
CALL ISPEXEC (BUFLEN, BUFFER);

LMMDISP—member list service
LMMDISP provides a flexible and efficient way of performing many of the tedious
tasks associated with processing member lists. A member list is a list of members
from a single ISPF library, or concatenation of ISPF libraries or MVS partitioned
data sets associated with a data ID.

The dialog invoking LMMDISP must first issue a successful call to both LMINIT
and LMOPEN.

The LMMDISP service performs six member list functions for a dialog according to
the value specified in the OPTION parameter. The six values that can be specified
are:

Display
This option creates and displays a member list for the specified data ID. A
user can select members for processing from this member list by entering a
valid line command next to the member name or by using the SELECT
primary command. A member that does not exist on the member list can
also be selected by using the SELECT primary command. The first member
selected from this display is returned in ISPF dialog variables.

LMMDEL

152 z/OS V2R2 ISPF Services Guide

A nonexistent member can only be selected if LMMDISP was invoked with
the ALLOWNEW parameter.

Get This option is used to return the second, and remaining selected members
from the most recent member list display. The GET option must be
invoked for each selected member that is to be returned. The GET option
can only return one selected member at a time.

Put This option saves information in the Line Command field, and the User
Data field of the member list.

Add This option adds a member to a member list.

Delete This option deletes a member from a member list.

Free This option frees the storage associated with a member list.

The description of each option, including format, parameters, return codes, and
examples, follows a discussion on dialog variables.

Note: Member lists generated by LMMLIST cannot be displayed by LMMDISP and
member lists generated by LMMDISP cannot be used with LMMLIST. Member lists
should be freed when switching between LMMLIST and LMMDISP with the same
data ID by using OPTION(FREE).

Dialog variables
Table 8 contains variables that LMMDISP saves in the function pool before
returning a selected member to the dialog that invoked it. The “Returned” column
indicates when a given variable is returned. For example, STATS(YES) indicates
that the variable is returned only if the dialog invokes LMMDISP with
STATS(YES).

Table 8. Variables saved by LMMDISP in the function pool

Variable Name Returned Variable Description

ZLAC STATS(YES) 2-character field containing the authorization code of the
member.

ZLALIAS STATS(YES) 8-character field containing the name of the real
member that this member is an alias of.

ZLAMODE STATS(YES) 3-character field containing the AMODE of the member.

ZLATTR STATS(YES) 20-character field containing the load module attributes.

ZLC4DATE STATS(YES) Member creation date, 4-digit year.

ZLCDATE STATS(YES) Member creation date.

ZLCNORC STATS(YES) Current number of records.

ZLCNORCE STATS(YES) 10-character field. If ZLEXT=YES, contains current
number of records.

ZLEXT STATS(YES) 3-character field. If ZLEXT=YES, then ZLCNORCE,
ZLINORCE, and ZLMNORCE contain values.

ZLINORC STATS(YES) Initial number of records.

ZLINORCE STATS(YES) 10-character field. If ZLEXT=YES, contains beginning
number of records.

ZLLCMD always Line command used to select the member.

ZLLIB STATS(YES) Number from 1 to 16 representing position of library in
concatenation sequence.

LMMDISP

Chapter 2. Description of the ISPF services 153

Table 8. Variables saved by LMMDISP in the function pool (continued)

Variable Name Returned Variable Description

ZLM4DATE STATS(YES) Date member was last modified, 4-digit year.

ZLMDATE STATS(YES) Date member was last modified.

ZLMEMBER always Member name of selected member.

ZLMNORC STATS(YES) Number of modified records.

ZLMNORCE STATS(YES) 10-character field. If ZLEXT=YES, contains number of
changed records.

ZLMOD STATS(YES) PDF modification number.

ZLMSEC STATS(YES) Seconds value of the last change time.

ZLMTIME STATS(YES) Time member was last modified.

ZLMTOP always Member that appeared at the top of the screen when the
display ended.

ZLPDSUDA 1 STATS(YES) Value of PDS directory user data area.

ZLRMODE STATS(YES) 3-character field containing the RMODE of the member.

ZLSIZE STATS(YES) 8-character field containing the load module size in hex.

ZLSSI STATS(YES) 8-character field containing the SSI information for a
load module.

ZLTTR STATS(YES) 6-character field containing the TTR of the member.

ZLUDATA always User data area on member list.

ZLUSER STATS(YES) System USERID of user to last modify member.

ZLVERS STATS(YES) PDF version number.

ZSCLM STATS(YES) Indicates whether the system was last modified by
SCLM or ISPF.

DISPLAY option
The DISPLAY option creates a member list and displays it. You can specify a
customized panel, place the cursor, and have member list line commands
validated.

LMMDISP with OPTION(DISPLAY) must be the first invocation of LMMDISP with
a data ID once you have invoked LMINIT and LMOPEN with that data ID. This
creates a member list for the data ID and displays it. Subsequent calls with the
DISPLAY option simply display the member list again. Modification of parameters
MEMBER, COMMANDS, and FIELD are ignored after a member list has been
created until it is freed by an LMMDISP invocation with OPTION(FREE).

When the member list panel is displayed, you can select members for processing
by entering valid line commands next to the member names or by using the
SELECT primary command.

If a member or members were selected, LMMDISP returns the first or only selected
member in ISPF dialog variables. To retrieve the remaining selections, LMMDISP
with OPTION(GET) must be invoked for each selected member.

1. ZLPDSUDA is put in the ISPF function pool only if STATS(YES) was specified and the selected member being returned had
member statistics that did not conform to ISPF standards. For example, a load module member of a partitioned data set usually
has load module statistics, and not ISPF statistics.

LMMDISP

154 z/OS V2R2 ISPF Services Guide

Command invocation format

�� ISPEXEC LMMDISP DATAID(data-id)
OPTION(DISPLAY)

�

�
MEMBER(pattern) NO

STATS(YES)
PANEL(panel-name)

�

�
ZCMD

CURSOR(ZLLCMD)
ZLUDATA

TOP(top-row) S
COMMANDS(ANY)

�

�
1

FIELD ()
9

ALLOWNEW
��

Call invocation format

�� CALL ISPLINK('LMMDISP�' , data-id ,
'DISPLAY�'
'�' , pattern

'�'
, �

�
'NO������'
'�'
'YES�����'

, panel-name
'�'

,
'ZCMD����'
'�'
'ZLLCMD��'
'ZLUDATA�'

, top-row
'�'

,'�' �

� ,'�' ,
'NO������'
'�'
'ANY�����'

,
1
'�'
9

, 'ALLOWNEW'
'�'

; ��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
data-id

The variable in which the data ID that uniquely identifies the data set is
stored.

DISPLAY
Indicates to LMMDISP that it is to create a member list if one does not exist
and display it.

pattern
The character string that is used to specify which members are to be displayed.
See the z/OS V2R2 ISPF User's Guide Vol I for a more complete description of
patterns and pattern matching.

YES|NO
Indicates if LMMDISP is to return member statistics via dialog variables. See
“Dialog variables” on page 153 for a list of the dialog variables.

LMMDISP—DISPLAY Option

Chapter 2. Description of the ISPF services 155

panel-name
The name of the panel on which the member list is to be displayed. See z/OS
V2R2 ISPF Planning and Customizing for the requirements for customized
panels. If this option is omitted, the panel is ISRML000.

ZCMD|ZLLCMD|ZLUDATA
The name of the field on which the cursor is placed when the member list is
displayed. If ZLLCMD or ZLUDATA is specified, the cursor is placed on that
field of the first member to appear on the display.

top-row
The name that designates which member is to appear first on the display. If
the member cannot be found and the list is sorted by name, the member
immediately preceding the requested one in the member list is scrolled to the
top. If the list is not sorted by name and the member is not found, the list is
scrolled to the top.

S|ANY
S indicates that LMMDISP is to allow only S as a valid line command for
member selection. ANY indicates to LMMDISP that any character or character
string is a valid line command.

1|9
Indicates to LMMDISP the length of the Line Command field on the member
list display.

If 9 is specified and the data sets associated with the specified data ID have
formatted records, the Created field is left out of the member list display. If the
data sets do not have formatted records (RECFM=U), the Alias field is left out
of the member list display.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

ALLOWNEW
Indicates that nonexisting members can also be selected. Omitting this
parameter causes only existing members to be selected.

Return codes
These return codes are possible:

0 One or more members were selected and/or a primary command not
recognized by LMMDISP was entered.

4 The requested data sets were empty, or no members matched the specified
pattern.

8 END or RETURN was entered.

10 No data set is associated with the given data ID; LMINIT has not been
completed.

12 Indicates one of these conditions:
v Data set not open.
v Data set not partitioned.
v Invalid parameter value.
v Invalid data set organization.
v Invalid invocation syntax.

LMMDISP—DISPLAY Option

156 z/OS V2R2 ISPF Services Guide

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the DISPLAY option of the LMMDISP service to display the
data associated with the data ID in variable DDVAR.
ISPEXEC LMMDISP DATAID(&DDVAR) +

OPTION(DISPLAY) +
MEMBER(ISR*) +
STATS(YES) +
CURSOR(ZCMD) +
COMMANDS(S) +
FIELD(1)

Call invocation:
CALL ISPLINK(’LMMDISP ’,

DDVAR,
’DISPLAY ’
’ISR* ’,
’YES ’,
’ ’,
’ZCMD ’,
’ ’,
’ ’,
’ ’,
’S ’,
1);

OR

Set the program variable BUFFER to contain:
BUFFER = ’LMMDISP DATAID(&DDVAR)

OPTION(DISPLAY)
MEMBER(ISR*)
STATS(YES)
CURSOR(ZCMD)
COMMANDS(S)
FIELD(1)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN,BUFFER);

GET option
The GET option is used to return information about the second, and all other
selected members from the member list that was created during the last member
list display (LMMDISP with OPTION(DISPLAY)). One selected member is returned
in the ISPF dialog variables for each invocation of LMMDISP with the GET option.

Command invocation format

�� ISPEXEC LMMDISP DATAID(data-id) OPTION(GET)
NO

STATS(YES)

��

Call invocation format

�� CALL ISPLINK('LMMDISP�' , data-id ,'GET�����' ,'�' ,
'NO������'
'�'
'YES�����'

�

LMMDISP—DISPLAY Option

Chapter 2. Description of the ISPF services 157

�); ��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
data-id

Variable in which the data ID that uniquely identifies the data sets is stored.

GET
Indicates to LMMDISP that it is to return the next member and, optionally, the
member statistics.

YES|NO
Indicates whether LMMDISP is to return member statistics through dialog
variables to the dialog. See “Dialog variables” on page 153 for a list of dialog
variables.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

Return codes
0 Successful completion.

8 No more selected members.

10 No data set is associated with the given data ID; LMINIT has not been
completed.

12 Indicates one of these conditions:
v Data set not open.
v Data set not partitioned.
v Invalid parameter value.
v Invalid data set organization.
v Invalid invocation syntax.
v Member list has not been created.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the GET option of the LMMDISP service to get the next
selected member of the member list of the data set associated with the data ID in
variable DDVAR.

Command invocation:
ISPEXEC LMMDISP DATAID(&DDVAR) +

OPTION(GET) +
STATS(YES)

LMMDISP—GET Option

158 z/OS V2R2 ISPF Services Guide

Call invocation:
CALL ISPLINK (’LMMDISP ’, DDVAR

,’GET ’
,’ ’
,’YES ’);

OR

Set the program variable BUFFER to contain:
BUFFER = ’LMMDISP DATAID(&DDVAR)

OPTION(GET)
STATS(YES)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN,BUFFER);

PUT option
The PUT option saves information in the Line Command field and User Data field
of a member in the member list. The User Data field is the field located between
the member name and the member statistics on the member list display panel.

Command invocation format

�� ISPEXEC LMMDISP DATAID(data-id) OPTION(PUT) MEMBER(member-name) �

�
ZLLCMD(lcmd-value) ZLUDATA(udata-value)

��

Call invocation format

�� CALL ISPLINK('LMMDISP�' , data-id ,'PUT�����' ,member-name ,'�' �

� ,'�' ,'�' ,'�' , lcmd-value
'�'

, udata-value
'�'

); ��

or

�� CALL ISPEXEC (buf-len,buffer); ��

Parameters
data-id

Variable in which the data ID that uniquely identifies the data sets is stored.

PUT
Indicates to LMMDISP that it is to save member list information for the
member specified by member-name parameter.

member-name
The name of the member for which this information is being saved.

lcmd-value
Value to be stored in the Line Command field of the member specified by
member-name. If it is longer than the line command area, it will be truncated,

LMMDISP—GET Option

Chapter 2. Description of the ISPF services 159

though it must not exceed 9 characters. The length of this variable is the same
as the value of the specification of keyword FIELD on the first member list
display.

udata-value
Value to be stored in the User Data field of member specified by member-name.
The value must not exceed 8 characters, must not contain embedded blanks,
and will be converted to uppercase.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

Return codes
0 Successful completion.

8 A specified member does not exist in the member list.

10 No data set is associated with the given data ID; LMINIT has not been
completed.

12 Indicates one of these conditions:
v Data sets not open.
v Data sets not partitioned.
v Invalid parameter value.
v Invalid data set organization.
v Invalid invocation syntax.
v Member list has not been created.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the PUT option of the LMMDISP service to save information
in the member list associated with the data ID in variable DDVAR.

Command invocation:
ISPEXEC LMMDISP DATAID(&DDVAR) +

OPTION(PUT) +
MEMBER(ISRFIRST) +
ZLUDATA(*RENAMED)

Call invocation:
CALL ISPLINK(’LMMDISP ’, DDVAR,

’PUT ’,
’ISRFIRST’,
’ ’,
’ ’,
’ ’,
’ ’,
’ ’,
’*RENAMED’);

OR

Set the program variable BUFFER to contain:

LMMDISP—PUT Option

160 z/OS V2R2 ISPF Services Guide

BUFFER = ’LMMDISP DATAID(&DDVAR)
OPTION(PUT)
MEMBER(ISRFIRST)
ZLUDATA(*RENAMED)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN,BUFFER);

ADD option
The ADD option adds a member to an existing member list. The member must not
exist in the member list and does not have to exist in the data set concatenation.

Command invocation format

�� ISPEXEC LMMDISP DATAID(data-id) OPTION(ADD) MEMBER(member-name) �

�
ZLLCMD(lcmd-value) ZLUDATA(udata-value)

��

Call invocation format

�� CALL ISPLINK('LMMDISP�' , data-id ,'ADD�����' ,member-name ,'�' �

� ,'�' ,'�' ,'�' , lcmd-value
'�'

, udata-value
'�'

); ��

or

�� CALL ISPEXEC (buf-len,buffer); ��

Parameters
data-id

Variable in which the data ID that uniquely identifies the data sets is stored.

ADD
Indicates to LMMDISP that it is to add a member to the member list.

member-name
Name of member to add to the member list.

lcmd-value
The value to be stored in the Line Command field of the member specified by
member-name. If it is longer than the line command field, it will be truncated,
though it must not exceed 9 characters. The length of this variable is the same
as the value of the specification of keyword FIELD on the first member list
display.

udata-value
The value to be stored in the User Data field of the member specified by
member-name. The value must not exceed 8 characters, must not contain
embedded blanks, and will be converted to uppercase.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

LMMDISP—PUT Option

Chapter 2. Description of the ISPF services 161

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

Return codes
0 Successful completion.

8 The member already exists in the member list.

10 No data set is associated with the given data ID; LMINIT has not been
completed.

12 Indicates one of these conditions:
v Data sets not open.
v Data sets not partitioned.
v Invalid parameter value.
v Invalid data set organization.
v Invalid invocation syntax.
v Member list has not been created.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the ADD option of the LMMDISP service to add a member
to the member list associated with the data ID in variable DDVAR.

Command invocation:
ISPEXEC LMMDISP DATAID(&DDVAR) +

OPTION(ADD) +
MEMBER(NEWMEMB) +
ZLUDATA(*NEWMEMB)

Call invocation:
CALL ISPLINK(’LMMDISP ’, DDVAR,

’ADD ’,
’NEWMEMB ’,
’ ’,
’ ’,
’ ’,
’ ’,
’ ’,
’*NEWMEMB’);

OR

Set the program variable BUFFER to contain:
BUFFER = ’LMMDISP DATAID(&DDVAR)

OPTION(ADD)
MEMBER(NEWMEMB)
ZLUDATA(*NEWMEMB)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following command:
CALL ISPEXEC (BUFLEN,BUFFER);

LMMDISP—ADD Option

162 z/OS V2R2 ISPF Services Guide

DELETE option
The DELETE option deletes a member from an existing member list. The member
must exist in the member list. The member is not deleted from the partitioned data
set in which it resides, only from the member list itself.

Command invocation format

�� ISPEXEC LMMDISP DATAID(data-id) OPTION(DELETE) MEMBER(member-name) ��

Call invocation format

�� CALL ISPLINK('LMMDISP�' , data-id ,'DELETE��' ,member-name ��

or

�� CALL ISPEXEC (buf-len,buffer); ��

Parameters
data-id

Variable in which the data ID that uniquely identifies the data sets is stored.

DELETE
Indicates to LMMDISP that it is to delete a member from the member list.

member-name
Name of member to delete from the member list.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

Return codes
0 Successful completion.

8 A specified member does not exist in the member list.

10 No data set is associated with the given data ID; LMINIT has not been
completed.

12 Indicates one of these conditions:
v Data sets not open.
v Data sets not partitioned.
v Invalid parameter value.
v Invalid data set organization.
v Invalid invocation syntax.
v Member list has not been created.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

LMMDISP—DELETE Option

Chapter 2. Description of the ISPF services 163

Example
This example invokes the DELETE option of the LMMDISP service to delete a
member from the member list associated with the data ID in variable DDVAR.

Command invocation:
ISPEXEC LMMDISP DATAID(&DDVAR) +

OPTION(DELETE) +
MEMBER(ISRFIRST)

Call invocation:
CALL ISPLINK(’LMMDISP ’, DDVAR,

’DELETE ’,
’ISRFIRST’);

OR

Set the program variable BUFFER to contain:
BUFFER = ’LMMDISP DATAID(&DDVAR)

OPTION(DELETE)
MEMBER(ISRFIRST)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Enter the
command:
CALL ISPEXEC (BUFLEN,BUFFER);

FREE option
The FREE option frees the storage used by the member list.

Command invocation format

�� ISPEXEC LMMDISP DATAID(data-id) OPTION(FREE) ��

Call invocation format

�� CALL ISPLINK('LMMDISP�' , data-id ,'FREE����'); ��

or

�� CALL ISPEXEC (buf-len,buffer); ��

Parameters
data-id

Variable in which the data ID that uniquely identifies the data sets is stored.

FREE
Indicates to LMMDISP that it is to free the member list and associated storage.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

LMMDISP—DELETE Option

164 z/OS V2R2 ISPF Services Guide

Return codes
0 Successful completion.

8 No member list is associated with the given data ID.

10 No data set is associated with the given data ID; LMINIT has not been
completed.

12 Indicates one of these conditions:
v Data sets not open.
v Data sets not partitioned.
v Invalid parameter value.
v Invalid data set organization.
v Invalid invocation syntax.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the FREE option of the LMMDISP service to free the storage
space used by the associated data ID in the variable DDVAR.

Command invocation:
ISPEXEC LMMDISP DATAID(&DDVAR) +

OPTION(FREE)

Call invocation:
CALL ISPLINK(’LMMDISP ’, DDVAR

,’FREE ’);
OR

Set the program variable BUFFER to contain:
BUFFER = ’LMMDISP DATAID(&DDVAR)

OPTION(FREE)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN,BUFFER);

LMMFIND—find a library member
The LMMFIND service finds a specified member of an ISPF library or partitioned
data set associated with a given data ID. You can also use LMMFIND to return
member statistics to you. If the data ID represents a concatenated set of ISPF
libraries, LMMFIND finds the first occurrence of the member in the set of libraries.

The LMINIT and LMOPEN services must be completed before LMMFIND can be
used.

Command invocation format

�� ISPEXEC LMMFIND DATAID(data-id) MEMBER(member-name)
LOCK

�

LMMDISP—FREE Option

Chapter 2. Description of the ISPF services 165

�
LRECL(lrecl-var) RECFM(recfm-var) GROUP(group-var)

�

�
NO

STATS(YES)
NOLLA

��

Call invocation format

�� CALL ISPLINK ('LMMFIND�' ,data-id ,member-name , 'LOCK����'
'�'

�

� , lrecl-var
'�'

, recfm-var
'�'

, group-var
'�'

'NO������'
, '�'

'YES�����'
�

� , 'NOLLA���');
'�'

��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
data-id

The data ID associated with the data set to be searched. The data ID is
generated by the LMINIT service. The maximum length of this parameter is 8
characters.

member-name
The name of the member to be found. The maximum length of this parameter
is 8 characters.

LOCK
The LOCK parameter is no longer used since the removal of LMF from the
ISPF product, but is left in for compatibility. If LOCK is specified, the
LMMFIND service will fail with return code 12. If you want to be able to
specify YES and have LMMFIND ignore the value, change the value of the
FAIL_ON_LMF_LOCK keyword in the ISPF Configuration Table to NO.

lrecl-var
The name of the variable into which the data record length (or, if the record
format is of variable length, the maximum data record length) is to be stored.
The maximum length of this parameter is 8 characters.

recfm-var
The name of the variable into which the record format code is to be stored. An
example is FB for fixed-length block data. The maximum length of this
parameter is 8 characters.

group-var
The name of the variable that will store the name of the group that contains
the found member. This variable contains the group name after the service is

LMMFIND

166 z/OS V2R2 ISPF Services Guide

executed only if the data is an ISPF library or a set of concatenated ISPF
libraries and LMINIT is used with ISPF name parameters; otherwise, the
variable is set to null. The maximum length of this parameter is 8 characters.

YES|NO

Whether statistics for the member are to be returned to the dialog invoking the
service. If you specify NO, no statistics are returned. If you specify YES and
the data ID represents a data set that has unformatted records (RECFM=U), the
statistics are returned in these dialog variables:

ZLAC A 2-character field containing the authorization code of the member.

ZLALIAS
An 8-character field containing the name of the real member that this
member is an alias of. If the member is not an alias this field is blank.

ZLAMODE
A 3-character field containing the AMODE of the member.

ZLATTR
A 20-character field containing the load module attributes. The
attributes are 2-character strings separated by blanks. These strings can
appear in the attribute string:
NX Not executable
OL Only Loadable
OV Overlay
RF Refreshable
RN Reentrant
RU Reusable
SC Scatter Load
TS Test

ZLLIB Position in concatenated data set sequence; a number from 1 to 16.

ZLRMODE
A 3-character field containing the RMODE of the member.

ZLSIZE
An 8-character field containing the load module size in hex.

ZLTTR
A 6-character field containing the TTR of the member.

ZLSSI An 8-character field containing the SSI information for a load module.

For other record formats (F or V), the statistics are returned in these dialog
variables:

ZLC4DATE
Creation date in 4-character year format; a character value shown in
your national format. If no value exists for this variable, ISPF sets the
value to blanks.

ZLCDATE
Creation date; a character value shown in your national format. If no
value exists for this variable, ISPF sets the value to blanks.

ZLCNORC
Current number of records; a number from 0 to 65 535. If no value
exists for this variable, ISPF sets the value to blanks.

ZLINORC
Beginning number of records; a number from 0 to 65 535.

LMMFIND

Chapter 2. Description of the ISPF services 167

ZLLIB Position in concatenated data set sequence; a number from 1 to 16.

ZLM4DATE
Last change date in 4-character year format; a character value shown in
your national format. If no value exists for this variable, ISPF sets the
value to blanks.

ZLMDATE
Last change date; a character value shown in your national format. If
no value exists for this variable, ISPF sets the value to blanks.

ZLMNORC
Number of changed records; a number from 0 to 65 535.

ZLMOD
Modification level; a number from 0 to 99.

ZLMSEC
Seconds value of the last change time. This is a two character field.

ZLMTIME
Last change time; a character value in the format hh:mm.

ZLUSER
User ID of last user to change the given member; an alphanumeric
field with a maximum length of 7 characters.

ZLVERS
Version number; a number from 1 to 99. If no value exists for this
variable, ISPF sets the value to blanks.

ZSCLM
Indicates whether the member was last modified by SCLM or ISPF. A
value of Y indicates the last update was made through SCLM. A value
of N indicates that the last update was made through ISPF.

ZLEXT
Indicates whether extended PDS statistics are available. Possible values
are blanks or YES, and the length is 3.

If ZLEXT has a value of YES, then these variables contain values in the
range 0 to 2147483647 for a length of 10; otherwise they are blank:
ZLCNORCE

Current number of records.
ZLINORCE

Beginning number of records.
ZLMNORCE

Number of changed records.

The preceding variables are stored in the function pool and therefore become
immediately available to command invocations. You cannot use the VGET
service to retrieve these variables, since VGET accesses the shared and profile
pools.

For an MVS partitioned data set, if the statistics are not stored in the data set
directory in the same format used by Edit, only ZLLIB is set with the position
in the concatenation.

NOLLA
If LLA is used to manage a cached directory entry, specify this keyword to
ensure that the cached entry is not used.

LMMFIND

168 z/OS V2R2 ISPF Services Guide

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return codes
These return codes are possible:

0 Normal completion.

8 Member not found.

10 No data set is associated with the given data ID; that is, LMINIT has not
been completed.

12 One of these:
v Data set is not open or is not open for input.
v A parameter value is invalid.
v Data set is not partitioned.
v LOCK parameter was specified.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example:
v Invokes the LMMFIND service to find member MYPROG in the data set

associated with the data ID stored in DDVAR.
v Stores the record length in variable LENVAR, the record format code in

FORMVAR, and the name of the group that contains member MYPROG in
GRPVAR.

Command invocation
ISPEXEC LMMFIND DATAID(&DDVAR) MEMBER(MYPROG) +

LRECL(LENVAR) RECFM(FORMVAR) +
GROUP(GRPVAR)

Call invocation
CALL ISPLINK (’LMMFIND ’,DDVAR,’MYPROG ’,’ ’,

’LENVAR ’,’FORMVAR ’,’GRPVAR ’);
OR

Set the program variable BUFFER to contain:
BUFFER = ’LMMFIND DATAID(&DDVAR) MEMBER(MYPROG)

LRECL(LENVAR) RECFM(FORMVAR)
GROUP(GRPVAR)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Enter the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

LMMFIND

Chapter 2. Description of the ISPF services 169

LMMLIST—list a library's members
The LMMLIST service, when used with the LIST or SAVE option, creates a list of
the first occurrence of all the members in an ISPF library, a concatenated set of
ISPF libraries, or an MVS partitioned data set associated with the given data ID.

When you invoke LMMLIST for the first time with the LIST option, the MEMBER
variable determines the starting position within the member list. To position at the
beginning, set the MEMBER variable to blanks. If the requested member is not
found, the next member in the member list is returned. The member list is sorted
by member name. Repeated invocation of LMMLIST provides access to each
member name in the member list.

Use LMMLIST with the SAVE option to write a list of member names to a data set.
If a MEMBER variable is nonblank, the member name you specify will be the first
member in the list.

You must complete the LMINIT and LMOPEN services before using LMMLIST.
Use the LMMLIST FREE option to release the list storage space when it is not
needed.

Note: Member lists generated by LMMLIST cannot be displayed by LMMDISP,
and member lists generated by LMMDISP cannot be used with LMMLIST. Member
lists should be freed when switching between LMMLIST and LMMDISP with the
same data ID.

Command invocation format

�� ISPEXEC LMMLIST DATAID(data-id)
LIST

OPTION(FREE)
SAVE

�

�
MEMBER(member-var) NO

STATS(YES)
GROUP(group)

�

�
PATTERN(member-pattern) LONG

��

Call invocation format

�� CALL ISPLINK ('LMMLIST�' ,data-id
'LIST����'

, '�'
'FREE����'
'SAVE����'

, member-var
'�'

�

�
'NO������'

, '�'
'YES�����'

, group
'�'

, member-pattern
'�'

, 'LONG ');
'�'

��

or

LMMLIST

170 z/OS V2R2 ISPF Services Guide

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
data-id

The data ID associated with the ISPF library, concatenated group of ISPF
libraries, or MVS partitioned data set for which the member list is to be
created. The data ID has been generated by the LMINIT service. The maximum
length of this parameter is 8 characters.

LIST|FREE|SAVE
These options determine the action performed by the LMMLIST service.

LIST The first time that you invoke the LMMLIST service with the LIST
option, it creates a member list for use by a dialog.

If member-var is initialized to blanks, the first name in the member list
is returned. If member-var is set to a member name for a starting
position within the member list, that member name is returned in
member-var. If the member is not found, the next member in the
member list is returned. If you request statistics information for the
member, the statistics are returned.

Later invocations of LMMLIST with the LIST option return succeeding
member names and their statistics, if requested, until the end of the list
is reached, as indicated by return code. At this point, the dialog should
invoke LMMLIST with the FREE option.

FREE The FREE option specifies that the storage acquired to create the
member list is to be freed. Each creation of a member list should be
matched by an invocation of LMMLIST with the FREE option.

SAVE The SAVE option writes all member names in a list specified by the
data ID to a data set. The name of the data set is determined by the
presence and value of the GROUP parameter.

member-var
The name of the variable into which the name of the member used for
positioning in the member list is specified, or the name of the next member in
the list is to be stored. The maximum length of this parameter is 8 characters.

When you invoke LMMLIST for the first time, member-var is used for
selecting a starting position within the member list. If the member is found,
that member name is returned in member-var. If the requested member is not
found, the next member in the member list is returned. To start at the
beginning of the list, set member-var to blanks.

The member-var parameter serves the same purpose for the SAVE option as it
does for the LIST option. When LMMLIST is used with OPTION (SAVE), a list
of member names is written to a data set. If member-var is nonblank, the
member name you specify is the first member in the list.

YES|NO
The STATS parameter can only be used with the LIST and SAVE options. The
default is STATS(NO). If you specify STATS(YES) the LMMLIST service
provides member statistics with the member names. This parameter is fully
described under “LMMFIND—find a library member” on page 165.

group
This 8-character value specifies the group name of the data set that the
LMMLIST service writes the member names list with the SAVE option. The

LMMLIST

Chapter 2. Description of the ISPF services 171

entire data set name is <prefix>.<group>.MEMBERS. If you do not specify a
group name the LMMLIST service writes to the ISPF LIST data set.

Note: LMMLIST service allocates the output data set with a DISP=OLD for the
SAVE option.

member-pattern
The character string that is used to specify which members are to be returned.
See the topic on naming ISPF libraries and data sets in the z/OS V2R2 ISPF
User's Guide Vol I for a more complete description of patterns and pattern
matching.

LONG
When SAVE is selected to save the member list to a data set, LONG formats all
dates in yyyy/mm/dd format for the member. Additionally, for PDS datasets
not containing load libraries, the untranslated member name is written after
the member name.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return codes
These return codes are possible:

0 One of these:
v LIST option - Normal completion. The member list is available and the

next member in the list is returned in the member-var parameter.
v FREE option - Normal completion. The member list is freed successfully.
v SAVE option - Normal completion. The member list is successfully

written to a data set.

4 Empty member list.

8 One of these:
v LIST option - End of member list.
v FREE option - Member list does not exist.
v SAVE option - For a data ID, the LMMLIST service has been invoked

with the SAVE option after being invoked with LIST option, but before
being invoked with the FREE option.

10 No data set is associated with the given data ID; that is, LMINIT has not
been completed.

12 One of these:
v The data set is not open or is not partitioned.
v A parameter value is invalid.
v Member list was created using LMMDISP.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Examples
Here are some examples of the LMMLIST service:

LMMLIST

172 z/OS V2R2 ISPF Services Guide

Example 1:
This example invokes the LMMLIST service with the LIST option to create a
member list of the data set associated with the data ID in variable DDVAR and to
return the first member namein the list in variable MEMVAR.

Command invocation: In this example, the LMMLIST service LIST option creates
a member list of the data set associated with the data ID in variable DDVAR and
returns the first member name in the list to variable MEMVAR.
SET &MEMVAR =
ISPEXEC LMMLIST DATAID(&DDVAR) OPTION(LIST) +

MEMBER(MEMVAR)

Call invocation:
MEMVAR = ’ ’;
CALL ISPLINK (’LMMLIST ’,DDVAR,’LIST ’,’MEMVAR ’);
OR

Set the program variable BUFFER to contain:
MEMVAR= ’ ’;
BUFFER = ’LMMLIST DATAID(&DDVAR) OPTION(LIST)

MEMBER(MEMVAR)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

Example 2:
In this example, the LMMLIST service SAVE option creates a member list, writes it
to the ISPF LIST data set, using the data ID stored in IDVAR.

Command invocation:
ISPEXEC LMMLIST DATAID(&IDVAR) STATS(YES) OPTION(SAVE)

Call invocation:
CALL ISPLINK (’LMMLIST ’,IDVAR,’SAVE ’,’ ’,’YES ’);
OR

Set the program variable BUFFER to contain:
BUFFER = ’LMMLIST DATAID(&IDVAR) STATS(YES) OPTION(SAVE)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

Example 3:
This example is an ISPF edit macro, which invokes the LMMLIST service to loop
through all of the members of the data set being edited. This macro starts with the
ISREDIT MACRO statement, which takes a parameter of a macro name. The data
ID and member name are retrieved using the ISREDIT DATAID and ISREDIT
MEMBER statements respectively. LMOPEN opens the data set so that LMMLIST
can use it. The member name variable is blanked, so that the LMMLIST service
starts at the first member in the data set. LMMLIST is called within a loop, which
stops when LMMLIST returns a non-zero return code, either because all members
have already been listed, or because an error occurred. If the LMMLIST service
returns successfully, the EDIT service is called with the member name and the edit
macro which was an input parameter. After the loop completes, the member list is

LMMLIST

Chapter 2. Description of the ISPF services 173

freed with the OPTIONS(FREE) parameter of the LMMLIST service, and the data
set is closed with the LMCLOSE service. This example is shipped with ISPF as
'ISP.SISPSAMP(ISRMBRS)'.
/*REXX**/
/* ISPF edit macro to process all members of partitioned data set, */
/* running a second, user-specified, ISPF edit macro against each */
/* member. */
/* */
/* To run: */
/* Enter "ISRMBRS macname" on the command line, where macname is */
/* the macro you want run against each member. */
/***/

’ISREDIT MACRO (NESTMAC)’

/***/
/* Get dataid for data set and issue LMOPEN */
/***/
’ISREDIT (DATA1) = DATAID’
’ISREDIT (CURMEM) = MEMBER’
Address ispexec ’LMOPEN DATAID(’data1’) OPTION(INPUT)’
member = ’ ’
lmrc = 0

/***/
/* Loop through all members in the PDS, issuing the EDIT service for */
/* each. The macro specified on the ISRMBRS invocation is passed as */
/* an initial macro on the EDIT service call. */
/***/
Do While lmrc = 0

Address ispexec ’LMMLIST DATAID(’data1’) OPTION(LIST),
MEMBER(MEMBER) STATS(NO)’

lmrc = rc
If lmrc = 0 & member /= curmem Then

do
Say ’Processing member’ member
Address ispexec ’EDIT DATAID(’data1’) MEMBER(’member’)

MACRO(’nestmac’)’
end

End

/***/
/* Free the member list and close the dataid for the PDS. */
/***/
Address ispexec ’LMMLIST DATAID(’data1’) OPTION(FREE)’
Address ispexec ’LMCLOSE DATAID(’data1’)’

Exit 0

LMMOVE—move members of a data set
The LMMOVE service moves members of a partitioned data set or an entire
sequential data set. Once the data has been moved, the “from” data set or
members are deleted. Packing data, replacing members, and automatic truncation
are optional. Only fixed-length and variable-length data sets can be packed.

Completion of the LMINIT service is required before you invoke LMMOVE. You
must specify ENQ(MOD) with the LMINIT service if you want to use LMMOVE to
append records to the “to-data-id”. See “LMINIT—generate a data ID for a data
set” on page 142 for information that can help prevent some common I/O errors
that might occur when using the LMMOVE service. LMMOVE requires that the
“to-data-id” be closed before invocation. The “from-data-id” must also be closed
when moving sequential data sets.

LMMLIST

174 z/OS V2R2 ISPF Services Guide

Note:

1. FROMID and TODATAID can refer to the same data set but they cannot have
the same data-id.

2. LMMOVE does not support the copying of unmovable data sets (data set
organization POU or PSU).

3. If the ALIAS option is in effect, LMMOVE automatically processes alias
members as follows:
v Either the main member or any alias member may be selected to move the

main member and all of its aliases. This will occur even if some of the
members are not displayed in the current member selection list.

v Alias members are moved for both load and non-load data sets as well as for
PDS and PDSE data sets.

Moving to the same data set is not supported when aliases are automatically
selected, as it would result in the “from” and “to” member names being the
same.

4. If the NOALIAS option is in effect, LMMOVE does not move alias members
unless either:
v All members of the data set are selected.
v A member pattern is used and both the main member and the alias member

are included in that pattern.
If the NOALIAS option is in effect, moving an alias member by itself will result
in a new member being created, even if the main member has already been
moved.

5. If from-data-id represents an empty sequential data set, LMMOVE performs the
copy but sets the return code to 4 as a warning.

Command invocation format

�� ISPEXEC LMMOVE FROMID(from-data-id)
FROMMEM(from-member-name)

�

� TODATAID(to-data-id)
TOMEM(to-member-name)

�

�
REPLACE PACK TRUNC SCLMSET(Y)

N

ALIAS

NOALIAS
��

Call invocation format

�� CALL ISPLINK ('LMMOVE��' ,from-data-id , from-member-name
'�'

�

� ,to-data-id , to-member-name
'�'

, 'REPLACE�'
'�'

, 'PACK����'
'�'

, �

LMMOVE

Chapter 2. Description of the ISPF services 175

� 'TRUNC���'
'�'

, '�'
'YES�����'
'NO������'

,
'ALIAS���'
'�'
'NOALIAS�'

); ��

or

�� CALL ISPEXEC (buf-len,buffer); ��

Parameters
from-data-id

Specifies the data ID name associated with the data set to be moved. The data
ID has been generated by the LMINIT service. The maximum length of this
parameter is 8 characters.

from-member-name
The member name or pattern of the members to be moved. An asterisk (*)
indicates that all members are to be moved. If the “from” data set is
partitioned, this parameter is required. If it is sequential, this parameter is not
allowed. The maximum length of this parameter is 8 characters.

to-data-id
Specifies the data ID name associated with the data set being moved to. The
data ID has been generated by the LMINIT service. The maximum length of
this parameter is 8 characters.

to-member-name
The name of the member being moved to the “to” data set. If a name is not
specified, the name of the member in the “from” data set is used. If the “from”
data set is sequential and the “to” data set is partitioned, this parameter is
required. If the “to” data set is sequential, this parameter is not allowed. The
maximum length of this parameter is 8 characters.

REPLACE
Specifies whether like-named members in the “to” data set are to be replaced.
If “replace” is not specified and the members exists in the “to” data set, then
the move will not be performed and a return code of 20 is issued.

If a list of members is being moved and one cannot be replaced, processing
stops and a message is issued indicating how many members were moved.

PACK
Data is stored in the “to” data set in packed format. If this parameter is not
specified, data is copied and stored as unpacked.

TRUNC
Specifies that truncation is to occur if the logical record length of the “to” data
set is less than the logical record length of the “from” data set. If truncation is
not specified and the logical record length of the “to” data set is less than the
logical record length of the “from” data set, the move is not performed and a
return code of 16 is issued.

SCLMSET
ISPF maintains a bit in the PDS directory to indicate whether a member was
last modified using SCLM or some function outside of SCLM. The SCLMSET
value indicates how to set this bit. YES indicates to set the bit ON. NO

LMMOVE

176 z/OS V2R2 ISPF Services Guide

indicates the bit should be OFF. If you want to keep the current setting for a
certain member, omit the SCLMSET parameter.

ALIAS|NOALIAS
With ALIAS in effect, either the main member or any alias member may be
selected to move the main member and all of its aliases. This will occur even if
a single member is specified or if some of the members are not displayed in
the current member selection list.

With NOALIAS in effect, aliases must be moved manually to maintain the
correct alias relationship. That is, the main member must be moved first
followed by the aliases.

buf-len
Specifies a fullword fixed binary integer containing the length of buffer.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC invocation for a command
procedure.

Return codes
0 Successful completion.

4 Either:
v “From” data set is empty.
v No member matched the pattern in the “from” data set.

8 “From” member not found.

10 No data set is associated with given data ID.

12 One of these:
v A like-named member already exists in the “to” data set and the Replace

option was not specified.
v One or more members of the 'TO' or 'FROM' data sets are "in use" by

you or another user and could not be moved.
v Invalid data set organization.
v Data set attribute invalid for packed data.
v Open error.

16 A truncation error occurred.

20 Severe error; unable to continue.

Example
This example invokes the LMMOVE service to move member MYPROG in the
data set associated with the data ID in variable DDVAR to the data set associated
with the data ID in variable DDVAR2. If MYPROG already exists, replace it.

Command invocation
ISPEXEC LMMOVE FROMID(&DDVAR) FROMMEM(MYPROG) +

TODATAID(&DDVAR2) REPLACE

Call invocation
CALL ISPLINK(’LMMOVE ’,DDVAR,’MYPROG ’,DDVAR2,’ ’,’REPLACE ’);
OR

Set the program variable BUFFER to contain:

LMMOVE

Chapter 2. Description of the ISPF services 177

BUFFER = ’LMMOVE FROMID(&DDVAR) FROMMEM(MYPROG)
TODATAID(&DDVAR2) REPLACE’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

LMMREN—rename a data set member
The LMMREN service updates the directory to rename a member of a partitioned
data set. You can use this service with an ISPF library or an MVS partitioned data
set.The LMINIT service with either ENQ(SHRW) or ENQ(EXCLU) and the
LMOPEN service with OPTION(OUTPUT) must be completed before you can use
the LMMREN service.

Command invocation format

�� ISPEXEC LMMREN DATAID(data-id) MEMBER(old-member-name) �

� NEWNAME(new-member-name)
NOENQ

��

Call invocation format

�� CALL ISPLINK('LMMREN��' ,data-id ,old-member-name ,new-member-name) �

� , 'NOENQ');
'�'

��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
data-id

The data ID associated with the data set that contains the member being
renamed. The data ID has been generated by the LMINIT service. The
maximum length of this parameter is 8 characters.

old-member-name
The present name of the member. The maximum length of this parameter is 8
characters.

Where the data-id refers to a partitioned data set load library (RECFM=U), and
old-member-name is the name of an existing primary member, the user data
component of any associated alias names will be updated to refer to the
renamed primary name.

new-member-name
The new member name, which must follow TSO data set naming conventions.
The maximum length of this parameter is 8 characters.

NOENQ
An optional parameter that specifies that ISPF should not issue its standard

LMMOVE

178 z/OS V2R2 ISPF Services Guide

ENQ during the processing of this service. This standard ENQ consists of a
major name of SPFEDIT and a minor name of the data set name and member.
ISPF by default will issue the ENQ unless NOENQ is specified.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return codes
These return codes are possible:

0 Normal completion.

4 Directory already contains the specified new name.

8 Member not found.

10 No data set is associated with the given data ID; that is, LMINIT has not
been completed.

12 One of these:
v The data set is not open or is not open for output.
v The parameter value is invalid.
v The data set organization is invalid.

20 Severe error; unable to continue.

Example
This example invokes the LMMREN service to rename member MYPROG in the
data set associated with the data ID in variable DDVAR to MYPROGA.

Command invocation
ISPEXEC LMMREN DATAID(&DDVAR) +

MEMBER(MYPROG) NEWNAME(MYPROGA)
[NOENQ]

Call invocation
CALL ISPLINK(’LMMREN ’,DDVAR,’MYPROG ’,’MYPROGA ’)

,[’NOENQ’]);

OR

Set the program variable BUFFER to contain:
BUFFER = ’LMMREN DATAID(&DDVAR)

MEMBER(MYPROG) NEWNAME(MYPROGA)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

LMMREN

Chapter 2. Description of the ISPF services 179

LMMREP—replace a member of a data set
The LMMREP service updates the directory to replace a member of a partitioned
data set. The specified member is added if it does not currently exist. This service
can be used with an ISPF library or an MVS partitioned data set. The LMINIT
service with either ENQ(SHRW) or ENQ(EXCLU), the LMOPEN service with
OPTION(OUTPUT), and the LMPUT service must be completed before you can
use the LMMREP service.

Command invocation format

�� ISPEXEC LMMREP DATAID(data-id) MEMBER(member-name) �

�
NO

STATS(YES)
NOENQ NO

EXT(YES)

��

Call invocation format

�� CALL ISPLINK('LMMREP��' ,data-id ,member-name
'NO������'

, '�')
'YES�����'

�

� , 'NOENQ���');
'�'

��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
data-id

The data ID associated with the data set that contains a member that is being
replaced. The data ID has been generated by the LMINIT service. The
maximum length of this parameter is 8 characters.

member-name
The name of the member to be replaced. The maximum length of this
parameter is 8 characters.

Where member-name is the name of an existing primary member, the primary
name and all associated alias names are updated. Where member-name is the
name of an existing alias member, the alias name is updated to be a primary
member and any association with the original primary member name is lost.

YES|NO
Whether the user data area in the directory should be updated so that the
statistics of the member are stored in the same format used by Edit.

If you type YES and the data set specified is partitioned and the records are
not unformatted (RECFM=U), the directory is updated with the member
statistics. At least a valid creation date (ZLCDATE) and the date of the most
recent change (ZLMDATE) must be provided in the member statistics.

LMMREP

180 z/OS V2R2 ISPF Services Guide

If you specify NO, the default value, the statistics are not updated.

These dialog variables are used to pass statistical information from the dialog
invoking the LMMREP service:

ZLVERS
Version number; a number from 1 to 99.

ZLMOD
Change level; a number from 0 to 99.

ZLCDATE
Creation date; a character value shown in your national format.

ZLMDATE
Last change date; a character value shown in your national format.

ZLMTIME
Last change time; a character value in the format hh:mm. ZLMTIME
can also be specified as an 8-character field in the format hh:mm:ss. If
the 6th character is not a colon, or if the 7th and 8th characters (ss) are
not in the range '00' to '59', only the hour and minute specifications are
used. The seconds value is set to the current time.

ZLMSEC
Seconds value of the last change time. This is a 2-character field.

Note: If the ZLMTIME variable does not contain a seconds value and
ZLMSEC is not set, the seconds value is set to 00. If both ZLMTIME
and ZLMSEC specify a seconds value, the value in ZLMSEC is used.

ZLCNORC
Current number of records; a number from 0 to 65 535.

ZLINORC
Beginning number of records; a number from 0 to 65 535.

ZLMNORC
Number of changed records; a number from 0 to 65 535.

ZLUSER
User ID of the last user to change the given member; the user ID can
have a maximum length of 7 characters.

NOENQ
An optional parameter that specifies that ISPF should not issue its standard
ENQ during the processing of this service. This standard ENQ consists of a
major name of SPFEDIT and a minor name of the data set name and member.
By default, ISPF will issue the ENQ unless NOENQ is specified.

EXT
When sets to YES, instructs ISPF to store statistics in extended format.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return codes
These return codes are possible:

LMMREP

Chapter 2. Description of the ISPF services 181

0 Normal completion.

8 Member is added; it did not previously exist.

10 No data set is associated with the given data ID; that is, LMINIT has not
been completed.

12 One of these:
v The data set is not open or is not open for output.
v The parameter value is invalid.
v The data set organization is invalid.
v Some member statistics have invalid values.

14 No record has been written for the member to be replaced.

16 Truncation or translation error in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the LMMREP service to update the directory of the data set
associated with the data ID in variable DDVAR to replace member MYPROG.

Command invocation
ISPEXEC LMMREP DATAID(&DDVAR) MEMBER(MYPROG)

Call invocation
CALL ISPLINK(’LMMREP ’,DDVAR,’MYPROG ’);
OR

Set the program variable BUFFER to contain:
BUFFER = ’LMMREP DATAID(&DDVAR) MEMBER(MYPROG)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

LMMSTATS—set and store, or delete ISPF statistics
The LMMSTATS service sets and stores, or deletes ISPF statistics for members of a
partitioned data set. This service can be used with ISPF libraries or an MVS
partitioned data set. Any and all statistics can be set, or all statistics can be deleted.
If no statistics exist, then LMMSTATS will calculate those not specified by
keyword. Only fixed- and variable-record format data sets are supported.
Completion of the LMINIT service is required before you invoke LMMSTATS. The
data set must not be opened for output.

Command invocation format

�� ISPEXEC LMMSTATS DATAID(data-id) MEMBER(member-name) �

�
VERSION(version-number) MODLEVEL(mod-level)

�

�
CREATED(create-date) MODDATE(last-modified-date)

�

LMMREP

182 z/OS V2R2 ISPF Services Guide

�
MODTIME(last-modified-time) CURSIZE(current-size)

�

�
INITSIZE(initial-size) MODRECS(records-modified) USER(user-id)

�

�
DELETE CREATED4(4-char-year-create-date)

�

�
MODDATE4(4-char-year-last-modified-date) Off

SCLM(On)
Asis

�

�
NOLLA NO

EXT(YES)

��

Call invocation format

�� CALL ISPLINK ('LMMSTATS' ,data-id ,member-name , version-number
'�'

�

� , mod-level
'�'

, create-date
'�'

, last-modified-date
'�'

�

� , last-modified-time
'�'

, current-size
'�'

, initial-size
'�'

�

� , records-modified
'�'

, user-id
'�'

, 'DELETE��'
'�'

�

� , 4-char-year-create-date
'�'

, 4-char-year-last-modified-date
'�'

�

�
Off

, '�'
On
Asis

, 'NOLLA���');
'�'

��

Parameters
data-id

The data ID associated with the data set containing the members whose
statistics are being modified or deleted. The data ID has been generated by the
LMINIT service. The maximum length of this parameter is 8 characters.

member-name
Member name, or pattern representing the members whose statistics are to be
modified or deleted. A pattern may be specified to indicate a subset of

LMMSTATS

Chapter 2. Description of the ISPF services 183

members or all members. The maximum length of this parameter is 8
characters. Specify a single asterisk as a member pattern to have the statistics
for all members processed.

version-number
The number to be assigned as the version number. This parameter must be an
integer between 1 and 99, inclusive.

mod-level
The number of modifications or changes to the member. This parameter must
be an integer between 0 and 99, inclusive.

create-date
The date the member was created. The format of the date is dependent on the
language in which ISPF is installed. The English format is YY/MM/DD.

last-modified-date
The date the member was last modified. The format of this parameter is the
same as the create-date parameter.

last-modified-time
The time the member was last modified. This parameter should be specified as
a character field and must be specified with 5 characters (for example -
hh:mm). This parameter may also be specified as an 8-character field in the
format hh:mm:ss. If the 6th character is not a colon, of if the 7th and 8th
characters (ss) are not in the range '00' to '59', only the hour and minute
specifications are used.

current-size
The current number of data records in the member. This parameter must be an
integer between 0 and 65 535, inclusive.

initial-size
The original number of data records in the member when it was created. This
parameter must be an integer between 0 and 65 535, inclusive.

records-modified
The number of data records modified in a member since it was created. This
parameter must be an integer between 0 and 65 535, inclusive.

user-id
The user ID of the user that last modified the data. The maximum length of
this parameter is 7 characters.

DELETE
PDF statistics are removed for the specified members.

4-char-year-create-date
The date that the member was created, in 4-character year format. The format
of the date depends on the language in which ISPF and ISPF/PDF are invoked.
The English format is YYYY/MM/DD.

4-char-year-last-modified-date
The date that the member was last changed, in 4-character year format. The
format of the date depends on the language in which ISPF and ISPF/PDF are
invoked. The English format is YYYY/MM/DD.

SCLM
The SCLM setting is a bit that ISPF uses to determine what type of edit the file
last had performed upon it.
On The last edit of this file was under SCLM control.

LMMSTATS

184 z/OS V2R2 ISPF Services Guide

Off The last edit of this file was under control of something other than
SCLM.

Asis This LMMSTATS operation is transferring the current setting of this file
as it already is.

NOLLA
If LLA is used to manage a cached directory entry, specify this keyword to
ensure that the cached entry is not used.

EXT
When sets to YES, instructs ISPF to store statistics in extended format. This
also removes the upperbound check on the current-size, initial-size, and
records-modified parameters.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

4 Either:
v Data set is empty.
v No members matched the pattern.

8 Member not found.

10 No data set is associated with the given data ID; that is, LMINIT has not
been completed.

12 One of these:
v Invalid parameter value.
v Data set is not partitioned.
v Data ID represents a concatenation of data sets.
v Data set is opened for output.

20 Severe error; unable to continue.

Example
This example invokes LMMSTATS to set to 20 the version number of member
MYPROG in the data set associated with the data ID stored in DDVAR.

Command invocation
ISPEXEC LMMSTATS DATAID(&DDVAR) MEMBER(MYPROG) VERSION(20)

Call invocation
CALL ISPLINK (’LMMSTATS’,DDVAR,’MYPROG ’,20);

OR

Set the program variable BUFFER to contain:
BUFFER = ’LMMSTATS DATAID(&DDVAR) MEMBER(MYPROG) VERSION(20)’;

LMMSTATS

Chapter 2. Description of the ISPF services 185

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

LMOPEN—open a data set
The LMOPEN service opens the data set associated with a given data ID so the
data set can be either read from, using LMGET, or written to, using LMPUT. The
LMINIT service must be completed before LMOPEN can be used.

For each LMOPEN invocation, you should invoke a matching LMCLOSE service.
The LMCLOSE service closes the data set to further processing until LMOPEN is
invoked again for that data set's data ID. Therefore, you should invoke the
LMCLOSE service when processing is completed for that data set. Otherwise,
unwanted data can be read from or written to the data set.

Note: Some library access services do not require that LMOPEN be executed
before invocation (for example, LMCOPY and LMMOVE). See the service
description to determine whether LMOPEN should be invoked.

It is the responsibility of the dialog developer to ensure that a data set is opened
for output only once. ISPF does not protect against this situation. From the time
LMOPEN for output is invoked until LMCLOSE is invoked, there are certain
restrictions on what can be done. Do not invoke the EDIT, DISPLAY, or TBDISPL
services. Displaying any panel at all may allow the user to edit the already opened
data set or invoke a dialog that opens the same data set for output.

Command invocation format

�� ISPEXEC LMOPEN DATAID(data-id)
INPUT

OPTION(OUTPUT)

�

�
LRECL(lrecl-var) RECFM(recfm-var) ORG(org-var)

��

Call invocation format

�� CALL ISPLINK ('LMOPEN��' ,data-id
'INPUT���'

, '�'
'OUTPUT��'

, lrecl-var
'�'

�

� , recfm-var
'�'

, org-var);
'�'

��

or

�� CALL ISPEXEC (buf-len, buffer); ��

LMMSTATS

186 z/OS V2R2 ISPF Services Guide

Parameters
data-id

The data ID associated with the data set to be opened. The data ID has been
generated by the LMINIT service. The maximum length of this parameter is 8
characters.

INPUT|OUTPUT
Whether the data set is to be opened for reading or writing. INPUT is the
default.

INPUT specifies that the dialog invoking the service uses the LMMFIND and
LMGET services to read from the data set. The enqueue value for the LMINIT
service can be SHR, EXCLU, or SHRW.

OUTPUT specifies that the dialog invoking the service uses LMPUT and either
LMMADD or LMMREP to write to the data set, or uses LMMDEL or
LMMREN to change the data set. The enqueue value for the LMINIT service
can be EXCLU, SHRW, or MOD. If the data set is allocated SHRW, ISPF uses
the RESERVE macro to reserve the DASD volume to the user when the data
set is opened for output. This DASD volume remains reserved to the user until
the LMCLOSE service is performed. The data ID must represent a single data
set, not a concatenation of data sets.

lrecl-var
The name of a character variable into which the actual data record length or, if
the record format is of variable length, the maximum data record length, is to
be stored. This is an output parameter. The maximum length of this parameter
is 8 characters.

recfm-var
The name of a character variable into which the record format code is to be
stored. This is an output parameter. This variable must contain at least four
characters. The maximum length of this parameter is 8 characters.

org-var
The name of a character variable into which the organization of the data is
stored. This is an output parameter. The variable contains “PO” if the data set
is partitioned and “PS” if it is physical sequential. The maximum length of this
parameter is 8 characters.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return codes
These return codes are possible:

0 Normal completion.

8 Data set could not be opened.

10 No data set is associated with the given data ID; that is, LMINIT has not
been completed.

12 One of these:
v The parameter value is invalid.
v Data set is already open.

LMOPEN

Chapter 2. Description of the ISPF services 187

v Cannot open concatenated data sets for output.
v Cannot open a data set allocated SHR for output.

16 Truncation or translation error in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the LMOPEN service to open the data set associated with
the data ID in variable DDVAR for reading. The record length is to be returned in
variable DLVAR, the record format in RFVAR, and the data set organization in
ORGVAR.

Command invocation
ISPEXEC LMOPEN DATAID(&DDVAR) OPTION(INPUT) +

LRECL(DLVAR) RECFM(RFVAR) +
ORG(ORGVAR)

Call invocation
CALL ISPLINK(’LMOPEN ’,DDVAR,’INPUT ’,

’DLVAR ’,’RFVAR ’,
’ORGVAR ’);

OR

Set the program variable BUFFER to contain:
BUFFER = ’LMOPEN DATAID(&DDVAR) OPTION(INPUT)

LRECL(DLVAR) RECFM(RFVAR)
ORG(ORGVAR)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

LMPRINT—print a partitioned or sequential data set
The LMPRINT service prints to the ISPF list data set an entire sequential or
partitioned data set, certain specified members of a partitioned data set, or an
index listing for a partitioned data set. The INDEX parameter can be used with
fixed, variable, or undefined record formats. If the INDEX parameter is not used,
the data set to be printed must be fixed or variable record format. Completion of
the LMINIT service is required before you invoke LMPRINT.

Command invocation format

�� ISPEXEC LMPRINT DATAID(data-id)
MEMBER(member-name) INDEX

�

�
YES

FORMAT(NO)
NOLLA

��

Call invocation format

�� CALL ISPLINK ('LMPRINT�' ,data-id , member-name
'�'

, 'INDEX���'
'�'

�

LMOPEN

188 z/OS V2R2 ISPF Services Guide

�
'YES�����'

, '�'
'NO������'

, 'NOLLA���');
'�'

��

or

�� CALL ISPEXEC (buf-len,buffer); ��

Parameters
data-id

The data ID associated with the data set to be printed. The data ID has been
generated by the LMINIT service. The maximum length of this parameter is 8
characters.

member-name
The member name or pattern of the members to be printed. An asterisk (*)
indicates that all members should be printed. If an index print is requested,
member-name must not be specified. The maximum length of this parameter is
8 characters. For more information about patterns and pattern matching, see
the z/OS V2R2 ISPF User's Guide Vol I.

INDEX
Indicates that only the index will be printed.

YES|NO
Indicates if the output is to be formatted. The default is YES.

NOLLA
If LLA is used to manage a cached directory entry, specify this keyword to
ensure that the cached entry is not used.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

4 Either:
v Data set is empty or contains an empty member.
v No members matched the pattern.

8 Member not found.

10 No data set associated with given data ID.

12 Either:
v Invalid data set organization; must be partitioned or sequential.
v Invalid parameter.

20 Severe error; unable to continue.

LMPRINT

Chapter 2. Description of the ISPF services 189

Example
This example invokes the LMPRINT service to print the sequential data set
associated with the data ID in variable DDVAR, with no formatting of output.

Command invocation
ISPEXEC LMPRINT DATAID(&DDVAR) FORMAT(NO)

Call invocation
CALL ISPLINK(’LMPRINT ’,DDVAR,’ ’,’ ’,’NO ’);

OR

Set the program variable BUFFER to contain:
BUFFER = ’LMPRINT DATAID(&DDVAR) FORMAT(NO)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

LMPUT—write a logical record to a data set
The LMPUT service writes one logical record to the data set associated with a
given data ID. The first LMPUT writes the first logical record to the data set, and
later invocations write succeeding records. The LMINIT service with
ENQ(EXCLU), ENQ(SHRW), ENQ(MOD), and the LMOPEN service with the
OUTPUT option must be completed before you can use the LMPUT service.

If the data set is an ISPF library or MVS partitioned data set, the LMMADD or
LMMREP service must be invoked after the last LMPUT to update the directory
and to write the last physical record.

If the data set is sequential, the LMCLOSE service must be invoked after the last
LMPUT to write the last physical record and to close the data set.

When MODE(MULTX) is used, the write operation occurs in segments (rather than
in single records), with each segment comprising multiple records. Each record is
prefixed by a 2-byte binary integer field containing its length. The maximum size
of each segment written is 32 000 bytes. LMPUT requires data in the dataloc-var to
be in this format:
+------+--------------+------+--------------+------+--------------+
|len | record |len | record |len | record |
+------+--------------+------+--------------+------+--------------+
<---- data-length should be set to this length --->
<---- if less than, then fewer records are written --->
<---- if greater than, then data-length is ignored --->

The LMPUT service writes records to a data set as is. That is, the LMPUT service
does not pack data before writing it if the data is in unpacked format. In order to
pack data before writing it, use Edit with the pack option.

Command invocation format

�� ISPEXEC LMPUT DATAID(data-id) MODE(INVAR)
MOVE
MULTX

DATALOC(dataloc-var) �

LMPRINT

190 z/OS V2R2 ISPF Services Guide

� DATALEN(data-length)
NOBSCAN

��

Call invocation format

�� CALL ISPLINK ('LMPUT���' ,data-id , '�'
='INVAR���'
'MOVE����'
'MULTX���'

,dataloc-var �

� ,data-length ,'�' , 'NOBSCAN�'
'�'

); ��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
data-id

The data ID associated with the data set into which the record is to be written.
The data ID has been generated by the LMINIT service. The maximum length
of this parameter is 8 characters.

INVAR|MOVE|MULTX
In INVAR mode and MULTX mode, the data-location parameter variable
contains the data itself. In MOVE mode, the data-location parameter contains
the address of the data to be written. A command dialog can use INVAR and
MULTX modes, but not MOVE mode.

dataloc-var
The name of a variable that, on entry to the LMPUT service, contains either the
data to be written (INVAR or MULTX mode) or the fullword binary virtual
storage address of the data to be written (MOVE mode).

The value of the variable passed from a program function can be either the
data record itself or the address of the data record, but it must be consistent
with the INVAR|MOVE|MULTX specification. If the variable was passed from
a command function written in CLIST or REXX, it must always contain the data
record. The maximum length of this parameter is 8 characters.

data-length
The length in bytes of the logical record to be written. The parameter must be
a positive nonzero integral value. If the data-length specification causes a
DBCS character string to be divided in the middle, the result may be
unpredictable.

In MULTX mode, the minimum of the data-length parameter and the length of
data written to the variable pool determines how much of the data-loc variable
is processed into records. The length field before each record determines the
amount of data written, not exceeding the data set record length, to each
record.

NOBSCAN
The No Backscan option; no truncation of trailing blanks for records of variable
length occurs.

LMPUT

Chapter 2. Description of the ISPF services 191

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return codes
These return codes are possible:

0 Normal completion.

10 No data set is associated with the given data ID; that is, LMINIT has not
been completed.

12 Either:
v The data set is not open or is not open for output.
v The parameter value is invalid.

16 Truncation or translation error in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the LMPUT service to write a data record, with a length of
80 bytes, contained in variable DATAVAR into the data set associated with the data
ID in variable DDVAR.

Command invocation
ISPEXEC LMPUT DATAID(&DDVAR) MODE(INVAR) +

DATALOC(DATAVAR) DATALEN(80)

Call invocation
DATALEN=80;
CALL ISPLINK(’LMPUT’,DDVAR,’INVAR ’,’DATAVAR ’,DATALEN);
Where DATALEN is a fullword integer variable.

OR

Set the program variable BUFFER to contain:
BUFFER = ’LMPUT DATAID(&DDVAR) MODE(INVAR)

DATALOC(DATAVAR) DATALEN(80)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

Note: Null variables must be defined to have a length greater than zero. Programs
containing definitions of null variables must specify VDEFINE with the NOBSCAN
option. Null variables defined in CLISTs should be initialized with the &STR
built-in function. Null variables defined in REXX should be initialized by setting
them to ' '. For example, if x is the name of a variable: x = ’ ’

LMPUT

192 z/OS V2R2 ISPF Services Guide

Example (MULTX)
This REXX example invokes the LMPUT service to process a data set in MULTX
mode, writing blocks of data in segments no larger than 32 000 bytes. LMPUT
pads records that are too short with blanks and truncates records that are too long
for the target data set.

/* REXX to write out some data to a VB dataset */
REC = ’’
DLEN = 0
DO I = 1 TO 100

X = 5 * I
A = ’DATA LINE ’I’ ’
DO J = 1 TO X

A = A || ’D’
END
RLEN = LENGTH(A)
NLEN = DLEN + RLEN + 2
IF NLEN > 32000 THEN DO

/* WRITE CURRENT BUFFER BEFORE IT GETS TOO BIG */
’LMPUT DATAID(’TESTFILE’) MODE(MULTX) DATALOC(REC) ,
DATALEN(’DLEN’)’
IF RC > 0 THEN I = 1000
REC = ’’
DLEN = RLEN + 2

END
ELSE DLEN = NLEN
RLEN = D2C(RLEN,2)
REC = REC || RLEN || A

END
/* WRITE LAST BUFFER */
’LMPUT DATAID(’TESTFILE’) MODE(MULTX) DATALOC(REC) ,
DATALEN(’DLEN’)’

LMQUERY—give a dialog information about a data set
The LMQUERY service returns values specified for the LMINIT service parameters
that are associated with a given data ID. In this way, LMQUERY provides the
dialog with selected information about a data set by showing how the LMINIT
parameters were set up when the data ID of that data set was generated.

The service sets the contents of the variables named with the information being
requested. Blanks are returned in a given variable if no value applies. For example,
if DATASET was not used in LMINIT, DATASET in LMQUERY would have
blanks.

Command invocation format

�� ISPEXEC LMQUERY DATAID(data-id)
PROJECT(proj-var)

�

�
GROUP1(group1-var) GROUP2(group2-var) GROUP3(group3-var)

�

�
GROUP4(group4-var) TYPE(type-var) DATASET(dsn-var)

�

�
DDNAME(ddn-var) VOLUME(serial-var) ENQ(enq-var)

�

LMPUT

Chapter 2. Description of the ISPF services 193

�
OPEN(open-var) LRECL(lrecl-var) RECFM(recfm-var)

�

�
DSORG(dsorg-var) ALIAS(alias-var) PASSWORD(password-var)

�

�
OVOLUME(ovolume-var)

��

Call invocation format

�� CALL ISPLINK ('LMQUERY�' ,data-id , proj-var
'�'

, group1-var
'�'

�

� , group2-var
'�'

, group3-var
'�'

, group4-var
'�'

, type-var
'�'

�

� , dsn-var
'�'

, ddn-var
'�'

, serial-var
'�'

, enq-var
'�'

�

� , open-var
'�'

, lrecl-var
'�'

, recfm-var
'�'

, dsorg-var
'�'

�

� , alias-var
'�'

, password-var
'�'

, ovolume-var);
'�'

��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
data-id

The data ID associated with the data set for which information is being
requested. The data ID has been generated by the LMINIT service. The
maximum length of this parameter is 8 characters.

project-var
The name of an 8-character variable into which the value of the PROJECT
parameter specified on the LMINIT service will be placed.

group1-var
The name of an 8-character variable into which the value of the GROUP1
parameter specified on the LMINIT service will be placed.

group2-var
The name of an 8-character variable into which the value of the GROUP2
parameter specified on the LMINIT service will be placed.

group3-var
The name of an 8-character variable into which the value of the GROUP3
parameter specified on the LMINIT service will be placed.

group4-var
The name of an 8-character variable into which the value of the GROUP4
parameter specified on the LMINIT service will be placed.

LMQUERY

194 z/OS V2R2 ISPF Services Guide

type-var
The name of an 8-character variable into which the value of the TYPE
parameter specified on the LMINIT service will be placed.

dataset-var
The name of a 46-character variable into which the value of the DATASET
parameter specified on the LMINIT service will be placed.

ddname-var
The name of an 8-character variable into which the value of the DDNAME to
which the data set has been allocated will be placed. If a DDNAME was
specified on the LMINIT service, it will be returned. If no DDNAME was
specified, the DDNAME generated by ISPF will be returned.

volume-var
The name of a 6-character variable into which the value of the VOLUME
parameter specified on the LMINIT service will be placed.

enq-var
The name of a 5-character variable into which the value of the ENQ parameter
specified on the LMINIT service will be placed.

open-var
The name of an 8-character variable into which an indicator will be placed to
indicate whether the data set was opened for INPUT, OUTPUT, or UPDATE. If
no LMOPEN has been done, blanks will be returned.

lrecl-var
The name of an 8-character variable into which the character representation of
the logical record length will be placed. If no LMOPEN has been done, blanks
will be returned.

recfm-var
The name of a 4-character variable into which the record format will be placed.
If no LMOPEN has been done, blanks will be returned. These characters may
appear in the record format value:
F Fixed-length records
V Variable-length records
U Undefined-length records
B Blocked records
T Track overflow
M Machine control characters
A ANSI control characters

dsorg-var
The name of a 2-character variable into which the data set organization (PO or
PS) will be placed.

alias-var
The name of a 1-character variable into which an indicator will be placed to
indicate whether the data set name originally specified was an alias name.
Values of Y or N will be returned.

password-var
The name of an 8-character variable into which the value of the PASSWORD
parameter specified on the LMINIT service will be placed.

ovolume-var
The name of an 8-character variable into which the volume on which the data
set resides will be placed. This variable will have a value even if no VOLUME
parameter was specified on the LMINIT service call.

LMQUERY

Chapter 2. Description of the ISPF services 195

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Blanks are returned in any variable for which there is no applicable value.

Return codes
These return codes are possible:

0 Normal completion.

4 No applicable information available for a specified keyword; blanks are
returned.

10 No data set is associated with the given data ID; that is, LMINIT has not
been completed.

16 Truncation or translation error in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the LMQUERY service to provide information about the ISPF
library associated with the data ID in variable DDVAR. The data ID is created by
using the LMINIT service with an ISPF library name. They use these variables:

PRJV Highest-level qualifier of the libraries.

GRP1V, GRP2V, GRP3V, and GRP4V
Second-level qualifiers of the libraries.

TYPEV
Third-level qualifier of the libraries.

Command invocation
ISPEXEC LMQUERY DATAID(&DDVAR) PROJECT(PRJV) GROUP1(GRP1V) +

GROUP2(GRP2V) GROUP3(GRP3V) GROUP4(GRP4V) +
TYPE(TYPEV)

Call invocation
CALL ISPLINK(’LMQUERY ’,DDVAR,’PRJV ’,’GRP1V ’,’GRP2V ’,

’GRP3V ’,’GRP4V ’,’TYPEV ’);

OR

Set the program variable BUFFER to contain:
BUFFER = ’LMQUERY DATAID(&DDVAR) PROJECT(PRJV) GROUP1(GRP1V)

GROUP2(GRP2V) GROUP3(GRP3V) GROUP4(GRP4V)
TYPE(TYPEV)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

LMQUERY

196 z/OS V2R2 ISPF Services Guide

LMRENAME—rename an ISPF library
The LMRENAME service renames an ISPF library or an MVS data set with a
three-level qualified data set name. The data set name used must be the cataloged
name, not an alias data set name.

Command invocation format

�� ISPEXEC LMRENAME PROJECT(project) GROUP(group) TYPE(type) �

� NEWPROJ(new-project)
NEWGROUP(new-group)
NEWTYPE(new-type)

��

Call invocation format

�� CALL ISPLINK('LMRENAME' ,project ,group ,type , new-project
'�'

�

� , new-group
'�'

, new-type
'�'

); ��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
project

The highest-level qualifier in the specification of an ISPF library or MVS data
set with a three-level qualified data set name. The maximum length of this
parameter is 8 characters.

group
The second-level qualifier in the specification of an ISPF library or MVS data
set with a three-level qualified data set name. The maximum length of this
parameter is 8 characters.

type
The third-level qualifier in the specification of an ISPF library or MVS data set
with a three-level qualified data set name. The maximum length of this
parameter is 8 characters.

new-project
The new highest-level qualifier. If this parameter is not specified, the project
parameter value is used. The maximum length of this parameter is 8
characters.

new-group
The new second-level qualifier. If this parameter is not specified, the group
parameter value is used. The maximum length of this parameter is 8
characters.

LMRENAME

Chapter 2. Description of the ISPF services 197

new-type
The new third-level qualifier. If this parameter is not specified, the type
parameter value is used. The maximum length of this parameter is 8
characters.

Note: You must specify either new-project, new-group, or new-type.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return codes
These return codes are possible:

0 Normal completion.

4 New name already exists.

8 One of these:
v Specified data set does not exist.
v Rename or catalog failed.
v Data set name is an alias.

12 The parameter value is invalid.

20 Severe error; unable to continue.

Example
This example invokes the LMRENAME service to rename a data set with the name
DEPT877.PRIVATE.ASSEMBLE to DEPT877.MINE.ASSEMBLE.

Command invocation
ISPEXEC LMRENAME PROJECT(DEPT877) +

GROUP(PRIVATE) +
TYPE(ASSEMBLE) +
NEWGROUP(MINE)

Call invocation
CALL ISPLINK(’LMRENAME’,’DEPT877 ’,

’PRIVATE ’,
’ASSEMBLE’,’ ’,
’MINE ’);

OR

Set the program variable BUFFER to contain:
BUFFER = ’LMRENAME PROJECT(DEPT877)

GROUP(PRIVATE)
TYPE(ASSEMBLE)
NEWGROUP(MINE)’;

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

LMRENAME

198 z/OS V2R2 ISPF Services Guide

LOG—write a message to the log data set
The LOG service causes a message to be written to the ISPF log data set.

The log data set, if allocated, is normally processed when you exit ISPF. A LOG
command is available to allow you to process the log data set without exiting ISPF.

Command invocation format

�� ISPEXEC LOG MSG(message-id) ��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('LOG�����', message-id); ��

Parameters
message-id

Specifies the identification of the message that is to be retrieved from the
message library and written to the log.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

12 The message-id contains invalid syntax or was not found.

20 Severe error.

Example 1
In a CLIST, dialog variable TERMSG contains a message-id. Write this message in
the ISPF log file.
ISPEXEC LOG MSG(&TERMSG)

Example 2
In a PL/I program, program variable TERMSG contains a message-id. The variable
TERMSG has been made accessible to ISPF by a previous VDEFINE operation.
Write this message in the ISPF log file. Set the program variable BUFFER to
contain:
LOG MSG(&TERMSG)

LOG

Chapter 2. Description of the ISPF services 199

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’LOG ’,TERMSG);

Example 3
Write message ABCX013 in the ISPF log file.
ISPEXEC LOG MSG(ABCX013)

Set the program variable BUFFER to contain:
LOG MSG(ABCX013)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’LOG ’,’ABCX013 ’);

MEMLIST—member list dialog service
The MEMLIST service enables you to access the Library Utility member list from
within a dialog.

When you invoke the MEMLIST service, a member list is displayed with either a
1-character or 9-character line command area. You can perform any of the Library
Utility functions, such as Edit, Browse, View, Print, Delete, and Rename, from
within the member list. If the line command field is 9 characters, you can also
invoke TSO commands against the selected member.

The MEMLIST service is given a data-id that has been associated with a
partitioned data set or concatenation of partitioned data sets by the LMINIT
service. The data-id must be freed by the LMFREE service.

Command invocation format

�� ISPEXEC MEMLIST DATAID(data-id)
MEMBER(pattern)

�

�
YES

CONFIRM(NO)
PANEL(panel-name) 9

FIELD(1)

�

�
S

DEFAULT(action)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

LOG

200 z/OS V2R2 ISPF Services Guide

or

�� CALL ISPLINK ('MEMLIST�' , data-id, , pattern
'�'

'YES'
, '�'

'NO'
�

� , panel-name
'�'

'S'
, '�');

'action'
��

Parameters
data-id

Specifies the variable in which the data ID that uniquely identifies the
partitioned data set is stored.

pattern
A character string that is used to specify which members are to be displayed. If
no pattern is specified, the entire list is displayed.

YES|NO
Specifies whether the Confirm Delete panel appears when you try to delete a
member from the data set you specified. YES is the default.

If YES is specified, ISPF displays the Confirm Delete panel.

If NO is specified, ISPF does not display the Confirm Delete panel. The
member is deleted with no additional action on your part.

panel-name
The name of the panel to use for displaying the member list. This can be a
customized panel that you provide. See z/OS V2R2 ISPF Planning and
Customizing for more information about developing a customized panel. If this
parameter is omitted, the default panel is ISRUDMM if FIELD is set to 1, and
ISRUDSM if FIELD is set to 9.

1|9
Indicates the length of the line command field on the member list display. The
default is 9.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

action
A single letter action to replace the “S” line command, such as E (edit) or B
(browse). If not specified, then the system attempts to invoke an external
command called “S”.

Return codes
These return codes are possible:

0 Normal completion.

8 The requested data set was empty or no members matched the specified
pattern.

MEMLIST

Chapter 2. Description of the ISPF services 201

10 No data set is associated with the given data ID. LMINIT has not been
completed.

12 Indicates one of these:
v Data set not partitioned.
v Parameter value not valid.
v Invocation syntax not valid.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error.

Example
This example shows an invocation of MEMLIST that displays the member list of a
partitioned data set with the Delete Data Set Confirmation panel. The variable ID
contains a data-id generated by the LMINIT service.

Here is the command invocation:
ISPEXEC MEMLIST DATAID(&ID) CONFIRM(YES)

Here is the call invocation:
CALL ISPLINK (’MEMLIST ’,ID,’YES ’);

Alternatively, you could:
1. Set the program variable BUFFER to contain

BUFFER=’MEMLIST DATAID(&ID) CONFIRM(YES)’;
2. Set program variable BUFLEN to the length of the variable BUFFER.
3. Issue the command

CALL ISPEXEC (BUFLEN, BUFFER);

PQUERY—obtain panel information
The PQUERY service returns information for a specified area on a specific panel.
The type, DYNAMIC or GRAPHIC, size, and position characteristics associated
with the area are returned in variables.

Command invocation format

�� ISPEXEC PQUERY PANEL(panel-name) AREANAME(area-name) �

�
AREATYPE(area-type-name) WIDTH(area-width-name)

�

�
DEPTH(area-depth-name) ROW(row-number-name)

�

�
COLUMN(column-number-name)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

MEMLIST

202 z/OS V2R2 ISPF Services Guide

or

�� CALL ISPLINK ('PQUERY��' , panel-name, area-name �

� , area-type-name
'�'

, area-width-name
'�'

, area-depth-name
'�'

�

� , row-number-name
'�'

, column-number-name);
'�'

��

Parameters
panel-name

Specifies the name of the panel for which information is desired.

area-name
Specifies the name of an area within the panel whose attributes are to be
returned.

area-type-name
Specifies the name of a variable in which the area type is to be stored. Either
DYNAMIC or GRAPHIC is returned left-justified and padded with blanks.
Nulls are returned if the return code is nonzero.

area-width-name
Specifies the name of a variable in which the number of columns in the area is
to be stored. For a call, the variable should be defined as a fullword fixed
integer.

area-depth-name
Specifies the name of a variable in which the number of rows comprising the
area is to be stored. For areas that are not extendable (EXTEND(OFF)), this is
the number of rows of the rectangular area in the panel definition. For
extendable areas (EXTEND(ON)), this is the number of rows in the area after
the panel body has been automatically extended to the depth of the physical
screen on which the PQUERY service request is being issued. When issuing a
PQUERY service request in the batch environment, the screen depth is
specified as the value of the BATSCRD parameter on the ISPSTART call. For a
call, the variable should be defined as a fullword fixed integer.

row-number-name
Specifies the name of a variable in which the number of the row of the top left
position of the area is to be stored. For a call, the variable should be defined as
a fullword fixed integer.

column-number-name
Specifies the name of a variable in which the number of the column of the top
left position of the area is to be stored. For a call, the variable should be
defined as a fullword fixed integer.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

PQUERY

Chapter 2. Description of the ISPF services 203

If the panel uses a variable for the WIDTH keyword value on the BODY header,
such as)BODY WIDTH(&WID), that variable must be set before invoking the
PQUERY service.

Return codes
These return codes are possible:

0 Normal completion

8 The panel does not contain the specified area.

12 The specified panel cannot be found.

16 Not all are values returned because insufficient space was provided.

20 Severe error.

Example
For the area named AREA1 on panel XYZ, return the number of columns in
variable PQCOLS and the area type in variable ATYPE.
ISPEXEC PQUERY PANEL(XYZ) AREANAME(AREA1)
AREATYPE(ATYPE) WIDTH(PQCOLS)

Set the program variable BUFFER to contain:
PQUERY PANEL(XYZ) AREANAME(AREA1) AREATYPE(ATYPE) WIDTH(PQCOLS)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’PQUERY ’,’XYZ ’,’AREA1 ’,

’ATYPE ’,’PQCOLS ’);

QBASELIB—query base library information
The QBASELIB service enables an ISPF dialog to obtain the current Library
information for a specified DDNAME. For a specified ddname, the data set names
allocated to that ddname are returned in a dialog variable.

Command invocation format

�� ISPEXEC QBASELIB dd-name
ID(id-var)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('QBASELIB' ,dd-name,, id-var)
'�'

��

PQUERY

204 z/OS V2R2 ISPF Services Guide

Parameters
dd-name

Specifies the ddname that is being queried. The value can be ISPPLIB,
ISPMLIB, ISPSLIB, ISPTLIB, ISPLLIB, ISPTABL, ISPFILE, or any valid base
DDNAME.

id-var
Optional parameter that specifies the name of a dialog variable which is to
contain "ID" information. It is set to the data set name or names of the ddname
that was specified in the service call. All data set names returned are fully
qualified. Multiple data set names are separated by a comma. TSO has a
maximum of 255 data set names allowed in the data set list. A data set name
list is bounded by parenthesis when the QBASELIB service is requested
through ISPLINK. The variable is not modified if the ddname specified is not
allocated. It is the responsibility of the dialog developer to initialize this
variable.

Note: Id-var should be initialized to blanks before every QBASELIB call.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 A DDNAME for the specified ddname exists and the requested information
has been successfully returned.

4 The specified dd-name is not defined.

16 A dialog variable translation or truncation error has occurred.

20 A severe error has occurred.

Example
A base library for messages (ISPMLIB) is defined. Query the "ID" information and
return the "ID" information in the variable IDV.

Here is the command invocation
ISPEXEC QBASELIB ISPMLIB ID(IDV)

Here is the call invocation:
CALL ISPLINK (’QBASELIB’,’ISPMLIB ’,’IDV ’);

Or alternatively, you could:
1. Set the program variable BUFFER to contain

QBASELIB ISPMLIB ID(IDV)
2. Set program variable BUFLEN to the length of the variable BUFFER.
3. Issue the command

CALL ISPEXEC (BUFLEN, BUFFER);

QBASELIB

Chapter 2. Description of the ISPF services 205

QLIBDEF—query LIBDEF definition information
The QLIBDEF service allows an ISPF dialog to obtain the current LIBDEF
definition information. This information can be saved by the dialog and used later
to restore any LIBDEF definitions that may have been overlaid. For each LIBDEF
lib-type, the ID parameter and the "type" of ID is returned. The absence of an
active LIBDEF definition for a specific lib-type is indicated by the return code.

Command invocation format

�� ISPEXEC QLIBDEF lib-type
TYPE(type-var) ID(id-var)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('QLIBDEF�' ,lib-type,, type-var , id-var)
'�' '�'

��

Parameters
lib-type

Specifies the LIBDEF lib-type definition that is being queried. The value may
be ISPPLIB, ISPMLIB, ISPSLIB, ISPTLIB, ISPLLIB, ISPILIB, ISPTABL, ISPFILE,
or a generic name. The values that may be specified on a LIBDEF service may
be specified on a QLIBDEF service.

type-var
Optional parameter that specifies the name of a dialog variable which is to
contain the "type" of LIBDEF definition. The possible values returned are
DATASET, EXCLDATA, LIBRARY or EXCLLIBR. The variable is not modified
if there is no LIBDEF. It is the responsibility of the dialog developer to
initialize this variable.

Note: Type-var should be initialized to blanks before every QLIBDEF call.

id-var
Optional parameter that specifies the name of a dialog variable which is to
contain "ID" information. It is set to the ddname or data set name or names
that were specified on the last active LIBDEF service. All data set names
returned are fully qualified, even if the original LIBDEF request did not specify
fully qualified names. Multiple data set names are separated by a comma. The
LIBDEF service has a maximum of 15 data set names allowed in the data set
list. A data set name list is bounded by parenthesis when the QLIBDEF service
is requested through ISPLINK. The variable is not modified if there is no
LIBDEF in effect. It is the responsibility of the dialog developer to initialize this
variable.

Note: Id-var should be initialized to blanks before every QLIBDEF call.

QLIBDEF

206 z/OS V2R2 ISPF Services Guide

buf-len
Specifies a fullword fixed binary integer containing the length of "buffer".

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Although not mandatory, it is suggested that the service interface (ISPLINK or
ISPEXEC) used by the QLIBDEF be the same as that used on the LIBDEF service to
restore the definition. This eliminates the need to adjust the syntax of the
information returned by QLIBDEF.

Return codes
These return codes are possible:

0 A LIBDEF definition for the specified lib-type exists and the requested
information, if any, has been successfully returned.

4 The specified lib-type does not have an active LIBDEF definition.

12 An invalid lib-type value of ISPPROF has been specified.

16 A dialog variable translation or truncation error has occurred.

20 A severe error has occurred.

Example
A panel library, ISPPLIB has been defined by the LIBDEF service. Query the type
of LIBDEF definition and the LIBDEF "ID" information and return the type of
LIBDEF definition in the variable, TYPEV, and the LIBDEF "ID" information in the
variable, IDV.
ISPEXEC QLIBDEF ISPPLIB TYPE(TYPV) ID(IDV)

Set the program variable BUFFER to contain:
QLIBDEF ISPPLIB TYPE(TYPV) ID(IDV)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’QLIBDEF ’,’ISPPLIB ’,’TYPEV ’,’IDV ’);

QTABOPEN—query open ISPF tables
The QTABOPEN service allows an ISPF dialog to obtain a list of currently open
ISPF tables. The TBSTATS or TBQUERY service can then be used to obtain more
detailed information about each table.

Command invocation format

�� ISPEXEC QTABOPEN LIST(list-var) ��

QLIBDEF

Chapter 2. Description of the ISPF services 207

Call invocation format

�� CALL ISPLINK ('QTABOPEN ' ,list-var); ��

Parameters
list-var

Specifies the prefix to be used to construct the names of ISPF variables which
contain the list of open tables. Each variable name is constructed by appending
a sequence number to the prefix. The total number of variables created is
returned in a variable constructed by appending '0' (zero) to the prefix.

Return codes
These return codes are possible:

0 Normal completion.

4 List incomplete. There was insufficient space to construct a valid variable
name.

12 Prefix too long. List-var must be 7 characters or less.

20 Severe error.

Example
In a CLIST, report the number of open tables:
ISPEXEC QTABOPEN LIST(myvar)
IF &LASTCC = 0 THEN DO

WRITE THE NUMBER OF TABLES OPEN ARE MYVAR0

QUERYENQ—query system ENQ data
The QUERYENQ service allows an ISPF dialog to obtain a list of all system
enqueues, or all system enqueues that match the specified criteria.

Note: QUERYENQ may not return all enqueue data when there are many
requestors with the same QNAME/RNAME combination. Only 84 requestors can
be returned under these circumstances.

Command invocation format

�� ISPEXEC QUERYENQ TABLE(table-name) QNAME(qname) RNAME(rname) �

� REQ(pattern) WAIT LIMIT(limit) SAVE(list-id) XSYS ��

Call invocation format

�� CALL ISPLINK ('QUERYENQ' ,table-name ,qname ,rname ,pattern �

� , 'WAIT '
'�'

,limit ,list-id , 'XSYS ');
'�'

��

or

QTABOPEN

208 z/OS V2R2 ISPF Services Guide

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
table-name

A table that must not exist before the service is called. It is returned to the user
as an open, non-writable table. It is the caller's responsibility to delete the table
with TBEND.

qname
A variable name that can contain a name or a prefix. A prefix must end in an
asterisk. The default is '*' (all qnames). Maximum length is 8 characters and
must be fully padded if called from a compiled program because embedded
blanks are allowed.

rname
A variable name that can contain a name or a prefix. A prefix must end in an
asterisk. The default is '*' (all rnames). Its length is 255 characters and must be
fully padded or VDEFINED to a shorter length if called from a compiled
program because embedded blanks are allowed.

pattern
Used to limit the ENQ search to specific requestors. The pattern can contain
asterisks which will match zero or more characters, and percent signs which
will match one character. The value of pattern is the actual pattern, and not a
variable name.

If the variable value is not a prefix (does not end in an asterisk before any
trailing blanks), it must be the exact length of the RNAME being requested.
For compiled programs, this can be controlled on the VDEFINE or VREPLACE
statement. The exceptions to this rule are for QNAMEs SPFEDIT and
SPFUSER. For SPFUSER requests, the variable name is padded or truncated to
7 characters. For SPFEDIT requests, variables less than 45 characters in length
are padded with blanks to 44 and treated as a prefix. Variables longer than 44
characters are padded to 52 and not treated as a prefix. Variables that are
passed in as a prefix are not changed.

WAIT
Indicates that all waiting ENQs are returned. This shows all ENQ contention
known to the local system. RNAME and QNAME are ignored for WAIT.

limit
The maximum size of the table. The default is 5000. Zero (0) indicates no limit.

list-id
An 8-character data set name qualifier, used to create a data set named
[prefix.userid].list-id.ENQLIST according to standard ISPF naming conventions.
The data set is a VB 332 data set, containing the same data as would be
returned in the table. The order is: Owner, System, Disposition, Hold, Scope,
Global, QNAME, and RNAME. RNAME is last because trailing blanks are
removed to reduce the size of the data set. A space is added between each
field.

XSYS
Indicates that the XSYS=YES parameter should be used on the GQSCAN
macro. The default is to use XSYS=NO. This means that some ENQs on other
systems may not be returned. Use of the XSYS keyword may have significant

QUERYENQ

Chapter 2. Description of the ISPF services 209

performance implications. See the documentation for the GQSCAN macro in
z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG for
more information.

Variables returned in each row of the table
Table 9. Variables Returned in Each Row of the Table

Name Size Description

ZENJOB 8 Job or address space name holding or requesting the ENQ

ZENQNAME 8 Qname portion of the ENQ

ZENRNAME 255 Rname portion of the ENQ

ZENDISP 5 SHARE or EXCLU

ZENHOLD 4 OWN or WAIT

ZENSCOPE 7 SYSTEM or SYSTEMS

ZENSTEP 7 STEP or blank

ZENGLOBL 6 GLOBAL or blank

ZENSYST 8 System name

ZENRESV 7 RESERVE or blank

Return codes
These return codes are possible:

0 Table returned or data set written, but XSYS parameter was not specified
and the system is running in STAR mode. The data returned may not
reflect all ENQs on all systems.

2 Table returned or data set written.

4 Table returned but truncated due to limit.

8 No ENQs satisfy the request.

10 No ENQs satisfy the request, but XSYS parameter was not specified and
the system is running in STAR mode. The data returned may not reflect all
ENQs on all systems.

12 Table creation error, parameter or other termination error. See messages for
more detail. This includes services not available due to configuration table
restrictions.

14 The SAVE data set is in use by another user.

20 Severe error, including TBADD error or data set creation errors.

REMPOP—remove a pop-up window
The REMPOP service removes the pop-up window created by an ADDPOP service
call. After invoking the REMPOP service, any DISPLAY, TBDISPL or SELECT panel
service call will either display a panel in the full panel area of the screen or a
higher level pop-up window, if one is active.

Command invocation format

QUERYENQ

210 z/OS V2R2 ISPF Services Guide

�� ISPEXEC REMPOP
ALL

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('REMPOP��' , 'ALL�����');
'�'

��

Parameters
ALL

Indicates that the dialog manager is to remove all pop-up windows that were
created at the current select level. If you do not specify ALL, only one pop-up
window is removed.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

16 A pop-up window does not exist at this select level.

20 Severe error.

SELECT—select a panel or function
The SELECT service can be used to display a hierarchy of selection panels or
invoke a function.

Within a dialog function, a program can invoke another program using standard
CALL or LINK conventions. These nested programs are transparent to the dialog
manager. However, when the invoked program is a new dialog function, SELECT
must be used.

APL2 can be invoked by specifying the APL2 command and its appropriate
keywords as the value of the CMD keyword of the SELECT service. In addition,
the SELECT keyword and value LANG(APL) should be coded on the SELECT
statement if the APL2 function needs to use DM component services. Otherwise,
unpredictable results can occur. The LANG(APL) information provides the basis
for establishing an ISPF – APL2 environment, and is required if any ISPF dialog
services are to be used. APL2 limits a user to one active workspace. In split screen
mode, if APL2 is active on one screen, it cannot be activated by the SELECT
service on the other screen.

REMPOP

Chapter 2. Description of the ISPF services 211

Command invocation format

�� ISPEXEC SELECT �

� PANEL(panel-name)
ADDPOP OPT(option)

CMD(command)
LANG(APL) MODE(LINE) BARRIER NEST

CREX FSCR
PGM(program-name)

PARM(parameters) MODE(LINE)
FSCR

MODELESS MAX VIS
WSCMD(workstation-command)

MODAL WSDIR(dir) MIN INVIS
MODELESS MAX VIS

WSCMDV(var_name)
MODAL WSDIR(dir) MIN INVIS

�

�
NEWAPPL

(application-id) PASSLIB

�

�
NEWPOOL SUSPEND EXCLPROF SCRNAME(screen_name)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('SELECT��' , length, �

� PANEL(panel-name)
ADDPOP OPT(option)

CMD(command)
LANG(APL) MODE(LINE) BARRIER NEST

CREX FSCR
PGM(program-name)

PARM(parameters) MODE(LINE)
FSCR

MODELESS MAX VIS
WSCMD(workstation-command)

MODAL WSDIR(dir) MIN INVIS
MODELESS MAX VIS

WSCMDV(var_name)
MODAL WSDIR(dir) MIN INVIS

�

�
NEWAPPL

(application-id) PASSLIB

�

�
NEWPOOL SUSPEND EXCLPROF SCRNAME(screen_name)

��

Parameters
panel-name

Specifies the name of a selection panel to be displayed.

option
Specifies an initial option, which must be a valid option on the menu specified

SELECT

212 z/OS V2R2 ISPF Services Guide

by panel-name. Specifying an option causes direct entry to that option without
displaying the menu. The menu is processed in non-display mode, as though
the user had entered the option.

ADDPOP
Specifies that the panel displayed from a SELECT service appears in a pop-up
window. An explicit REMPOP is performed when the SELECT PANEL has
ended.

command
Specifies a CLIST command procedure, any TSO command that is to be
invoked as a dialog function, or an APL2 command with appropriate keyword
values. If the APL2 workspace is already started, command specifies a string to
be passed to the APL2 workspace for execution.

CLIST command parameters can be included within the parentheses. You can
prefix the CLIST procedure name with a percent sign (%) to:
v Improve performance.
v Prevent ISPF from entering line display mode if you do not specify

MODE(FSCR).
v Ensure that the CLIST command procedure is invoked if ISPF has access to a

program function that has the same name as the CLIST. If you use the
percent sign prefix, ISPF searches only for a CLIST with the specified name.
However, without the percent sign prefix, ISPF searches first for a program,
then for a CLIST procedure.
TSO commands specified by this parameter are invoked by the ATTACH
macro.

LANG(APL)
If this is the first LANG(APL) request, this parameter specifies that the
command specified by the CMD keyword is to be invoked and an APL2
environment is to be started. If this is not the first request, this parameter
specifies that the string specified by the CMD keyword is to be passed to the
APL2 workspace and executed. If this is the first LANG(APL) request and a
command other than APL2, or equivalent, is specified by the CMD keyword,
the result is not predictable.

LANG(CREX)
Specify that the command specified in the CMD keyword is a REXX EXEC that
has been compiled and link-edited into a load module, and that a
CLIST/REXX function pool is to be used rather than an ISPF module function
pool. LANG(CREX) is optional if the compiled REXX has been link-edited to
include any of the stubs EAGSTCE, EAGSTCPP, or EAGSTMP.

See z/OS V2R2 ISPF Dialog Developer's Guide and Reference for more information
about Compiled REXX processing.

MODE(LINE)
Specifies that line mode is to be entered when selecting a command procedure
or program function. If you do not specify mode when selecting a command
procedure, line mode is entered unless you prefix the command with a percent
sign (%).

MODE(FSCR)
Specifies that line mode is not to be entered when selecting a command,
CLIST, or program function.

SELECT

Chapter 2. Description of the ISPF services 213

BARRIER
Specifies that no commands from the REXX data stack will be pulled upon
completion of a command invoked with the SELECT service.

NEST
Specifies that commands invoked with the SELECT service will be nested. This
will allow command output trapping and communication through global
variables.

program-name
Specifies the name of a program that is to be invoked as a dialog function. If
the program is coded in PL/I, it must be a MAIN procedure. Dialog
developers should avoid the ISP and ISR prefixes (the DM and PDF
component codes) in naming dialog functions. Special linkage conventions,
intended only for internal ISPF use, are used to invoke programs named
“ISPxxxxx” and “ISRxxxxx”.

This parameter must specify a name of a load module, load module alias, or
an entry point that is accessible by use of the LINK macro.

See the z/OS V2R2 ISPF Dialog Developer's Guide and Reference for restrictions
that apply to dialogs in various languages.

parameters
Specifies input parameters to be passed to the program. The program should
not attempt to modify these parameters.

The parameters within the parentheses are passed as a single character string,
preceded by a halfword containing the length of the character string, in binary.
The length value does not include itself.

Parameters passed from the SELECT service to a PL/I program can be
declared on the procedure statement in the standard way:
XXX: PROC (PARM) OPTIONS(MAIN);

DCL PARM CHAR (nnn) VAR;

If the value of the PARM field is to be used as an ISPF dialog variable, it must
be assigned to a fixed-length character string, because the VDEFINE service
cannot handle variable-length PL/I strings.

Note: If you want to use special characters in your character string you must
use a single quotation mark at the beginning and at the end of the string.

Some high-level languages, such as PL/I, have parameter syntax requirements
specific to the language. For example, the first character of the PARM field
must be a slash ('/'), because PL/I assumes that any value before the slash is a
runtime option. See the publications supporting the language for specific
requirements.

workstation-command
Specifies a fully qualified workstation program including any parameters. To
issue a command that is not a program (.exe, .com, .bat) DOS allows it to be
prefaced with COMMAND. For example:
SELECT WSCMD(COMMAND /C DIR C:)

MODAL
The MODAL parameter invokes the workstation command modally. It waits
until the workstation command has completed and then returns to ISPF.

MODELESS
The MODELESS parameter invokes the command modelessly and is only valid
when running in GUI mode. It is the default. It does not wait until the

SELECT

214 z/OS V2R2 ISPF Services Guide

workstation command has completed. It always returns a return code of zero if
the command was started, even if the command does not exist at the
workstation.

WSDIR(dir)
The WSDIR parameter specifies the variable name containing the workstation
current working directory. This directory is the directory from which the
workstation command should be invoked.

MAX
The MAX parameter attempts to start the workstation command in a
maximized window. The workstation command may override this request.
MAX and MIN are mutually exclusive.

MIN
The MIN parameter attempts to start the workstation command in a
minimized window. The workstation command may override this request.
MAX and MIN are mutually exclusive.

VIS
The VIS parameter attempts to start the workstation command as a visible
window. The workstation command may override this request. This is the
default. VIS and INVIS are mutually exclusive.

INVIS
The INVIS parameter attempts to start the workstation command in an
invisible (hidden) window. The workstation command may override this
request. VIS and INVIS are mutually exclusive.

var
Specifies a variable name that contains the text string of a command and its
parameters. Use this when the command path or parameters, or both, contain
any embedded blanks, quotation marks, or special characters that might not
parse properly with the WSCMD service.

NEWAPPL
Specifies that a new application is being invoked.

application-id
Specifies a 1- to 4-character code for the new application named in this
SELECT service request. The code is to be prefixed to the user's profile, the
edit profile, and the command table associated with the application, as follows,
where xxxx is the application-id:
Application Profile - xxxxPROF
Edit Profile - xxxxEDIT
Command Table - xxxxCMDS

The names xxxxPROF, xxxxEDIT, and xxxxCMDS represent table (member)
names in the profile or table input library.

If the NEWAPPL keyword is specified but the application-id is not specified,
the default application-id is ISP, as follows:
User Profile - ISPPROF
Edit Profile - ISPEDIT
Command Table - ISPCMDS

If the NEWAPPL keyword is not specified, the application-id defaults to the
current application-id.

If an application is invoked using SELECT with NEWAPPL and the invoked
application has its own command table that is defined to ISPTLIB using

SELECT

Chapter 2. Description of the ISPF services 215

LIBDEF, the LIBDEF of ISPTLIB must be done before issuing the SELECT
CMD(..) NEWAPPL(..) for the application's command table to be available for
use. This is necessary because the command table associated with the APPLID
is opened at the time that the SELECT is processed. Failing to do the LIBDEF
for ISPTLIB before the SELECT with NEWAPPL will result in the command
table which was defined using LIBDEF not being opened and commands not
being found. If the application's unique command table is not found, then the
ISPF default command table, ISPCMDS, is loaded for that dialog.

This example shows how to code a LIBDEF for ddname ISPTLIB with the data
set that contains the command table, APPCCMDS, for application APPC.

The application invoking CLIST CCC:
.
ISPEXEC SELECT CMD(CCC) NEWAPPL(TEMP)
.

CLIST CCC:
PROC 0
ISPEXEC LIBDEF ISPTLIB DATASET ID(....)
ISPEXEC SELECT CMD(CMDC) NEWAPPL(APPC) PASSLIB
ISPEXEC LIBDEF ISPTLIB
EXIT CODE(0)

PASSLIB
Indicates that the current set of application-level ISPF libraries, if any exist, are
to be used by the application being selected. PASSLIB is valid only if
NEWAPPL is specified.

The PASSLIB keyword can also be specified when setting the & ZSEL variable
in a selection panel or in command table entries containing the SELECT action.

When both NEWAPPL and PASSLIB are specified, the current set of
application-level libraries is made available to the selected application. Any
changes made to this set of libraries while this application is running are in
effect only while this application has control. Once the selected application
terminates, the original set of application-level libraries is reactivated.

If LIBDEF has been issued for a user link library when a SELECT specifying
NEWAPPL and PASSLIB is issued, the selected program makes available the
LIBDEF user link library definition. Any SELECTs subsequently issued by the
program employ member search orders dependent upon the LIBDEF user link
library definition.

If a SELECT of a program is issued, and a LIBDEF of a user link library has
not been made or PASSLIB is not specified, any SELECTs issued by the
program rely on this convention for member search order:

JOB PACK AREA
ISPLLIB
STEP LIBRARY
LINK PACK AREA
LINK LIBRARY

If NEWAPPL is specified and PASSLIB is not specified, the current set of
application-level libraries, if any exist, are not to be used by the application
being selected. The deactivation of these libraries takes place before the
application is selected. The current application-level library definitions are
saved, however, so they can be replaced in the library search sequence when
the application being selected terminates.

When NEWAPPL and PASSLIB are not specified, the current set of
application-level libraries remains in effect because the selected function does

SELECT

216 z/OS V2R2 ISPF Services Guide

not represent a new application. If the selected function changes any of these
library definitions, the changes apply through all select levels of the
application of which the selected function is a part.

NEWPOOL
Specifies that a new shared variable pool is to be created without specifying a
new application. Upon return from the SELECT service, the current shared
variable pool is reinstated.

SUSPEND
Specifies that all pop-up windows in the logical screen should be temporarily
removed from the terminal screen. Panels displayed by the selected dialog will
appear in the full logical screen.

The selected dialog can issue ADDPOP and REMPOP services to create its own
pop-up windows. A dialog that is invoked with the SUSPEND option cannot
display panels in the windows created by the previous dialog.

When the selected dialog ends, any pop-up windows that were removed will
be restored.

The terminal screen is not changed at the time of the SELECT service. The
pop-up windows are removed or restored at the next panel display.

EXCLPROF
Specifies that ISPF is to disable the multi-logon profile sharing support for this
service call. The parameter is ignored if the ISPF multi-logon support is not
enabled, either by means of the ISPF Configuration options, or by specifying
SHRPROF on the ISPSTART command. The parameter is optional.

screen-name
Specifies that the logical screen in which the SELECT command is issued will
be given the specified "screen name". This logical screen will keep the screen
name until that select level is exited, then it returns to its previous value. The
user may override the screen name assigned with the SCRNAME command.

length
Specifies the length of a buffer containing the selection keywords. This
parameter must be a fullword fixed binary integer.

keywords
Specifies the name of a buffer containing the selection keywords. This is a
character string parameter. The selection keywords in the buffer are specified
in the same form as they would be coded for the ISPEXEC command. For
example:
BUFNAME = ’PANEL(ABC) OPT(9) NEWPOOL’;

In the example shown, it is assumed that BUFNAME is the name of the buffer.
The single quotes are part of the syntax of the PL/I assignment statement.
They are not stored in the buffer itself.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Note:

SELECT

Chapter 2. Description of the ISPF services 217

1. If a command or program is invoked by using SELECT, the return code from
the command or program is passed to the function that invoked SELECT. If a
selected command, not using ISPF display services, could cause a full-screen
input or output operation, the developer should refresh the entire screen on the
next display. To do this, use the CONTROL DISPLAY REFRESH service. A
selected command procedure or program can cause the screen settings to
change. ISPF does not check for these changes. It is the user's responsibility to
ensure that the screen settings are saved and then restored before returning to
ISPF.

2. The CONTROL ERRORS mode set in the dialog function that issued the
SELECT service call does not apply to return codes being passed from the
command or program, but it does apply to return codes set by the SELECT
service.

3. The SELECT interface permits parameters to be specified as symbolic variables.
Before a scan and syntax check of a statement, variable names and the
preceding ampersands are replaced with the value of the corresponding
variable. A single scan takes place.

4. If you receive an abend from a SELECT command, a message indicating the
abend code is issued. However, the ISPF subtask does not abend. The results of
this scenario are the same if you have ISPF TEST mode on or off.

Return codes
These return codes are possible if a panel is specified:

0 Normal completion. The END command was entered from the selected
menu.

4 Normal completion. The RETURN command was entered or the EXIT
option was specified from the selected menu or from some lower-level
menu.

12 The specified panel could not be found.

16 Truncation error in storing the ZCMD or ZSEL variable.

20 Severe error.

Note: A return code of 0 is returned when the SELECT service has been coded
with no other parameters.

These return codes are possible from a MODAL workstation command:

20 Parameter or syntax on SELECT service (all SELECTs) is not valid.

41 A null command was passed to the workstation.

42 ISPF was not able to start the command at the workstation.

43 Remote execution of commands was not allowed by the user.

OTHER
The return code from the workstation command + 100 if the return code
from the workstation command was greater than 0.

Examples
See:
v “Example 1” on page 219
v “Example 2” on page 219
v “Example 3” on page 219

SELECT

218 z/OS V2R2 ISPF Services Guide

v “Example 4”
v “Example 5”
v “Example 6”

Example 1
In a CLIST, start a hierarchy of selection panels from a dialog function. The first
menu in the hierarchy is named QOPTION.
ISPEXEC SELECT PANEL(QOPTION)

Example 2
In a PL/I program, start a hierarchy of selection panels from a dialog function. The
first menu in the hierarchy is named QOPTION. Set the program variable BUFFER
to contain:
SELECT PANEL(QOPTION)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

Example 3
In a PL/I program, program variable QOPT contains 'PANEL(QOPTION)' and
program variable QOPTL is a fullword variable containing the binary equivalent of
14. Start a hierarchy of selection panels beginning with panel QOPTION.
CALL ISPLINK (’SELECT ’,QOPTL,QOPT);

Example 4
In a CLIST, invoke a program-coded dialog function named PROG1, and pass it a
parameter string consisting of ABCDEF.
ISPEXEC SELECT PGM(PROG1) PARM(ABCDEF)

Example 5
In a PL/I program, invoke a program-coded dialog function named PROG1, and
pass it a parameter string consisting of ABCDEF. Set the program variable BUFFER
to contain:
SELECT PGM(PROG1) PARM(ABCDEF)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

Example 6
In a PL/I program, program variable PROG contains 'PGM(PROG1)
PARM(ABCDEF)' and program variable PROGL is a fullword variable containing
the binary equivalent of 23. Invoke a program-coded dialog function, named
PROG1, and pass it a parameter string consisting of ABCDEF.
CALL ISPLINK (’SELECT ’,PROGL,PROG);

SETMSG—set next message
The SETMSG service allows a dialog function to display a message on the next
panel that is written by ISPF to the terminal. The next panel does not have to be
displayed as a result of action taken by the function routine. In fact, the function
routine can have terminated before the next panel is displayed.

SELECT

Chapter 2. Description of the ISPF services 219

The specified message is retrieved from the message library at the time the set
message request is issued. Values for all variables defined in the message are
substituted at this time and the message is saved in a message area for the
application. When the next panel is displayed, the message is retrieved from the
save area and displayed on the panel.

If multiple set-message requests have been issued before a panel is displayed, only
the last message is displayed. You can use the optional COND parameter to
request that the specified message is to be displayed only if there is no prior
SETMSG request pending. A message specified on the panel display request is
overridden by any outstanding set next message request.

A message that has been set with SETMSG is displayed the next time any
full-screen output is sent to the display, regardless of whether that output is a
panel, table display, Browse data, or Edit data. The SETMSG service executed in
the batch environment causes the message to be written to the log at the point at
which it would normally be sent to the screen for display.

The message is preserved across CONTROL NONDISPL; that is, the message is
displayed on the next actual output to the terminal. If the next panel is processed
in non-display mode, the message remains pending, to be displayed with any
following panel that is processed in display mode.

If the message refers to a help panel, the help panel should not include
substitutable variables. Variables in related help panels contain the values current
at the time the HELP command is issued, not at the time the SETMSG service is
invoked.

Command invocation format

�� ISPEXEC SETMSG MSG(message-id)
COND MSGLOC(message-field-name)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('SETMSG��' , message-id , 'COND����'
'�'

�

� , message-field-name)
'�'

��

Parameters
message-id

Specifies the identification of the message to be displayed on the next panel.

COND
Specifies that the message is to be displayed on the next panel only if no prior
SETMSG request is pending.

SETMSG

220 z/OS V2R2 ISPF Services Guide

message-field-name
Used to position the message pop-up window. If the application specifies this
parameter, the Dialog Manager positions the message pop-up relative to the
named field.

If this parameter is omitted and a message is displayed in a message pop-up
window, the window is displayed at the bottom of the logical screen or below
the active ADDPOP pop-up window if one exists.

For compatibility with later versions, this parameter should be specified only
when the message will display in a pop-up window.

Note: When running in GUI mode, this parameter is ignored.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

4 SETMSG with COND parameter issued and a SETMSG request was
pending.

12 The specified message field name or message not be found.

20 Severe error.

Example 1
On the next panel that is displayed, put a message whose ID, ABCX015, is in a
dialog variable named TERMSG.
ISPEXEC SETMSG MSG(&TERMSG)

Set the program variable BUFFER to contain:
SETMSG MSG(ABCX015)

Set program variable BUFLEN to the length of the variable BUFFER. Enter the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’SETMSG ’,’ABCX015 ’);

Example 2
This SETMSG and DISPLAY request displays message TSTA110 in a message
pop-up window that requires a response from the end user before interaction with
the underlying panel is possible. The message pop-up window is positioned
relative to the field FLD1.
PROC 0
ISPEXEC SETMSG MSG(TSTA110) MSGLOC(FLD1)
ISPEXEC DISPLAY PANEL(A)

SETMSG

Chapter 2. Description of the ISPF services 221

Using this message definition for TSTA110
TSTA110 .WINDOW=RESP
’ENTER NUMERIC DATA’

Results in:

TBADD—add a row to a table
The TBADD service adds a new row of variables to a table. The new row is added
either immediately following the current row, pointed to by the current row
pointer (CRP), or is added at a point appropriate for maintaining the table in the
sequence specified in a previously processed TBSORT request. The CRP is set to
point to the newly inserted row.

The current contents of all dialog variables that correspond to columns in the table,
which were specified by the KEYS and NAMES parameters in a TBCREATE, are
saved in the row.

Additional variables, those not specified when the table was created, can also be
saved in the row. These “extension” variables apply only to this row, not the entire
table. The next time the row is updated, the extension variables must be specified
again if they are to be rewritten.

For tables with keys, the table is searched to ensure that the new row has a unique
key. The current contents of the key variables, dialog variables that correspond to
keys in the table, are used as the search argument.

For tables without keys, no duplicate checking is performed.

To improve performance when you add several rows to a table, you can specify
the MULT keyword with the number-of-rows parameter. By specifying the estimated
number of rows you expect to add to the table, you supply ISPF the information it
needs to more efficiently obtain the necessary storage for all rows when processing
the first of these rows (rather than getting storage for one row at a time). The
default value for the number-of-rows parameter is one unless the value is modified
at ISPF installation.

When successive TBADD service requests with the MULT keyword are executed in
a program loop, the first request results in storage being acquired for the multiple
number of rows specified. On subsequent TBADD requests in the loop, ISPF
checks to see if enough storage remains for the current row being added. If so,
ISPF acquires no additional storage. If not, ISPF acquires additional storage as
specified by the MULT keyword.

PANEL A

FIELD===> FLD1
┌────────────────────┐
│ │
│ ENTER NUMERIC DATA │
│ │
!────────────────────┘

SETMSG

222 z/OS V2R2 ISPF Services Guide

If the first row to be added to the table includes one or more extension variables,
ISPF assumes that all rows added by the TBADD service request might include
extension variables and takes that into account when obtaining the storage for the
rows to be added.

If ISPF is unable to obtain all the storage it has estimated is needed for the number
of rows specified (or if not specified, the default number of rows), it gets storage
for one row at a time and issues a return code of four. ISPF does not issue an
informational message when this condition occurs. At any time, if there remain
rows to be added to the table and ISPF is unable to get storage for one row, a
severe error (return code 20) results.

Command invocation format

�� ISPEXEC TBADD table-name
SAVE(name-list) ORDER

�

�
MULT(number-of-rows)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('TBADD���' , table-name , name-list
'�'

�

� , 'ORDER���'
'�'

, number-of-rows);
'�'

��

Parameters
table-name

Specifies the name of the table to be updated.

name-list
Specifies a list of extension variables, by name, that are to be saved in the row,
in addition to the variables specified when the table was created.

ORDER
Specifies that the new row is to be added to the table in the order specified in
the sort information record. A TBSORT must have been performed for this
table before use of this keyword. For tables with keys, the table is searched to
ensure that the new row has a unique key. If a row with the same key already
exists, the row is not added. This keyword is ignored if the table has never
been sorted. If this keyword is omitted, any existing sort information record is
nullified and to restore it, another TBSORT is required.

When a newly inserted row has sort field names equal to the sort field names
of an existing row, the insertion is made after the existing row.

number-of-rows
Specifies the expected total number of rows to be added to a table during one

TBADD

Chapter 2. Description of the ISPF services 223

session. This is a fullword fixed value greater than zero. The default value is
one unless changed at ISPF installation. The maximum value that can be
specified is 32 767.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

4 The number-of-rows parameter was specified but storage was obtained for
only a single row.

8 A row with the same key already exists; CRP set to TOP (zero). Returned
only for tables with keys.

12 Table is not open.

16 Numeric convert error; see numeric restrictions for TBSORT. Returned only
for sorted tables.

20 Severe error.

Example 1
Add a row to the table TELBOOK, based on the sort information record, copying
to the row values from function pool variables whose names match those of table
variables.
ISPEXEC TBADD TELBOOK ORDER

Set the program variable BUFFER to contain:
TBADD TELBOOK ORDER

Set program variable BUFLEN to the length of the variable BUFFER. Enter the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBADD ’,’TELBOOK ’,’ ’,’ORDER ’);

Example 2
Add multiple rows to table TELBOOK.
ISPEXEC TBADD TELBOOK MULT(&ROWS)

where &ROWS is a variable containing the number of rows to be added.
ISPEXEC TBADD TELBOOK ORDER MULT(4)

where 4 is the number of rows to be added
CALL ISPLINK (’TBADD ’,’TELBOOK ’,’ ’,’ORDER ’,ROWS);

TBADD

224 z/OS V2R2 ISPF Services Guide

where ROWS is a fixed binary variable containing the number of rows to be
added.
CALL ISPLINK (’TBADD ’,’TELBOOK ’,’ ’,’ ’,8);

where 8 indicates the number of rows to be added.

TBBOTTOM—set the row pointer to bottom
The TBBOTTOM service sets the current row pointer (CRP) to the last row of a
table and retrieves the row unless the NOREAD parameter is specified.

If NOREAD is not specified, all variables in the row, including key, name, and
extension variables, if any, are stored in the corresponding dialog variables. A list
of extension variable names can also be retrieved.

Command invocation format

�� ISPEXEC TBBOTTOM table-name
SAVENAME(var-name)

�

�
ROWID(rowid-name) NOREAD POSITION(crp-name)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('TBBOTTOM' , table-name , var-name
'�'

�

� , rowid-name
'�'

, 'NOREAD��'
'�'

, crp-name);
'�'

��

Parameters
table-name

Specifies the name of the table to be used.

var-name
Specifies the name of a variable where a list of extension variable names
contained in the row will be stored. The list is enclosed in parentheses, and the
names within the list are separated by a blank.

rowid-name
Specifies the name of a variable in which a number that uniquely identifies the
row being accessed is to be stored. Later, this identifier can be specified in the
ROW parameter of TBSKIP to cause the CRP to be positioned to the row. This
identifier is not saved on permanent storage by TBSAVE or TBCLOSE. The
variable must be an 8-byte character field.

TBADD

Chapter 2. Description of the ISPF services 225

NOREAD
Specifies that the variables contained in the requested row are not to be read
into the variable pool.

crp-name
Specifies the name of a variable in which the row number pointed to by the
CRP is to be stored. If the CRP is positioned to TOP, the row number returned
is zero.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

8 Table is empty; CRP set to TOP (zero).

12 Table is not open.

16 Variable value has been truncated or insufficient space provided to return
all extension variable names.

20 Severe error.

Example
Move the current row pointer (CRP) of the table TELBOOK to the last row of the
table. From this row, store variable values into the respective function pool
variables having the same names.
ISPEXEC TBBOTTOM TELBOOK

Set the program variable BUFFER to contain:
TBBOTTOM TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBBOTTOM’,’TELBOOK ’);

TBCLOSE—close and save a table
The TBCLOSE service terminates processing of the specified table and deletes the
virtual storage copy, which is then no longer available for processing.

If the table was opened in WRITE mode, TBCLOSE copies the table from virtual
storage to the table output library. In this case, the table output library must be
allocated to a ddname of ISPTABL or defined by a LIBDEF service request before
invoking this service. When storing a table in an output library, the user can give it
a new name. The table name used in the output library must not be an alias name.

TBBOTTOM

226 z/OS V2R2 ISPF Services Guide

If the table was opened in NOWRITE mode, TBCLOSE simply deletes the virtual
storage copy.

Table output can be directed to a table output library other than the default library
specified on the table output ISPTABL DD statement. The library to be used must
be allocated before table services receives control. Thus, an application can update
a specific table library. This is particularly useful for applications that need to
maintain a common set of tables containing their data.

A TBCLOSE request for a shared table causes the use count in the table for that
logical screen to be decremented by one. If the use count for all logical screens is
zero, the TBCLOSE service is performed. If the count is not zero, a TBSAVE service
is performed. This leaves the table available for continued processing in any screen
that still has a use count greater than zero.

Issuing a TBCLOSE with the LIBRARY parameter for a table is not related to
closing the data set allocated to that ddname. However, if the LIBDEF service with
the DATASET keyword is used to define the alternate library, the data set may be
closed and freed by deleting the corresponding LIBDEF specification.

Command invocation format

�� ISPEXEC TBCLOSE table-name
REPLCOPY

NEWCOPY NAME(alt-name)
�

�
PAD(percentage) LIBRARY(library)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('TBCLOSE�' , table-name
'REPLCOPY'

, '�'
'NEWCOPY�'

�

� , alt-name
'�'

, percentage
'�'

, library reserved position ;
'�' '�'

��

Parameters
table-name

Specifies the name of the table to be closed.

NEWCOPY
Specifies that the table is to be written at the end of the output library,
regardless of whether an update in place would have been successful. This
ensures that the original copy of the table is not destroyed before a
replacement copy has been written successfully.

TBCLOSE

Chapter 2. Description of the ISPF services 227

REPLCOPY
Specifies that the table is to be rewritten in place in the output library. If the
existing member is smaller than the table that replaces it, or if a member of the
same name does not exist in the library, the complete table is written at the
end of the output library.

A comparison is made between the virtual storage size of the table and the
external size in the table output library. If there is insufficient storage to write
the table in place, it is written at the end of the table output library.

alt-name
Specifies an alternate name for the table. The table is stored in the output
library with the alternate name. If another table already exists in the output
library with that name, it is replaced. If the table being saved exists in the
output library with the original name, that copy remains unchanged.

percentage
Specifies the percentage of padding space, based on the total size of the table.
The padding is added to the total size of the table only when the table is
written as a new copy. This parameter does not increase the table size when an
update in place is performed.

This parameter must have an unsigned integer value. For a call, it must be a
fullword fixed binary integer.

The default value for this parameter is zero.

Padding permits future updating in place, even when the table has expanded
in size. Should the table expand beyond the padding space, the table is written
at the end of the table output library instead of being updated in place.

library
Specifies the name of a DD statement or LIBDEF lib-type that defines the
output library in which the table is to be closed. If specified, a generic
(non-ISPF) ddname must be used. If this parameter is omitted, the default is
ISPTABL.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

12 Table is not open.

16 Alternate table output library was not allocated.

20 Severe error.

Example
Close the table TELBOOK.
ISPEXEC TBCLOSE TELBOOK

Set the program variable BUFFER to contain:

TBCLOSE

228 z/OS V2R2 ISPF Services Guide

TBCLOSE TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBCLOSE ’,’TELBOOK ’);

TBCREATE—create a new table
The TBCREATE service creates a new table in virtual storage, and opens it for
processing.

TBCREATE allows specification of the variable names that correspond to columns
in the table. These variables will be stored in each row of the table. Additional
“extension” variables can be specified for a particular row when the row is written
to the table.

One or more variables can be defined as keys for accessing the table. If no keys are
defined, only the current row pointer can be used for update operations.

Command invocation format

�� ISPEXEC TBCREATE table-name
KEYS(key-name-list)

�

�
NAMES(name-list)

WRITE

NOWRITE REPLACE LIBRARY(library)
�

�
SHARE

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('TBCREATE' , table-name , key-name-list
'�'

�

� , name-list
'�'

'WRITE���'
, '�'

'NOWRITE�'
, 'REPLACE�'

'�'
, library

'�'
�

TBCLOSE

Chapter 2. Description of the ISPF services 229

� , 'SHARE���');
'�'

��

Parameters
table-name

Specifies the name of the table to be created. The name can be from one to
eight alphanumeric characters in length and should begin with an alphabetic
character.

key-name-list
Specifies the variables, by name, that are to be used as keys for accessing the
table. See name-list for the specification of name lists. If this parameter is
omitted, the table will not be accessible by keys.

name-list
Specifies the non-key variables, by name, to be stored in each row of the table.

If key-name-list and name-list are omitted, the table can contain only extension
variables that must be specified when a row is written to the table.

WRITE
Specifies that the table is permanent, to be written to disk by the TBSAVE or
TBCLOSE service. The disk copy is not actually created until the TBSAVE or
TBCLOSE service is invoked.

The WRITE/NOWRITE usage of a shared table must be consistent on all
TBCREATE and TBOPEN requests. That is, all requests for a given shared table
that result in concurrent use of that table must specify the same WRITE or
NOWRITE attribute.

NOWRITE
Specifies that the table is for temporary use only. When processing is complete,
a temporary table should be deleted by the TBEND or TBCLOSE service.

REPLACE
Specifies that an existing table is to be replaced. If a table of the same name is
currently open, it is deleted from virtual storage before the new table is
created, and return code 4 is issued. If the WRITE parameter is also specified
and a duplicate table name exists in the table input library, the table is created
and return code 4 is issued. The duplicate table is not deleted from the input
library. However, if TBSAVE or TBCLOSE is issued for the table, the existing
table is replaced with the current table.

A table currently existing in virtual storage in shared mode cannot be replaced.
If this is attempted, a return code of 8 results. Further, a shared table cannot be
replaced by a non-shared table, and vice versa.

library
Specifies the name of a DD statement or LIBDEF lib-type that defines the input
library. If specified, a generic (non-ISPF) ddname must be used. If this
parameter is omitted, the default input library name is ISPTLIB.

SHARE
Specifies that the created table can be shared between all logical screens while
the user is in split-screen mode. A table can be “created” by one screen only.
That is, once one screen has issued a TBCREATE SHARE for a given table,
another screen is not permitted to issue a TBCREATE for the same table.

TBCREATE

230 z/OS V2R2 ISPF Services Guide

A successful TBCREATE or TBOPEN request causes the use count in the table
to be incremented by one. The use count determines the action taken by
subsequent TBEND and TBCLOSE requests.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

4 Normal completion—a duplicate table exists but REPLACE was specified.

8 Either the table already exists and REPLACE was not specified, or
REPLACE was specified and the table is in SHARE mode.

12 Table in use; ENQ failed.

16 WRITE mode specified and alternate table input library not allocated.
TBCREATE checks the input library to determine if a duplicate table exists.
See return code 8.

20 Severe error.

Examples
See:
v “Example 1”
v “Example 2”
v “Example 3” on page 232

Example 1
In a CLIST, create a permanent table, TELBOOK, to contain the variable TABKEY
and other variables, the names of which are specified in dialog variable TABVARS.
The key field is TABKEY.
ISPEXEC TBCREATE TELBOOK KEYS(TABKEY) NAMES(&TABVARS)

Example 2
In a PL/I program, create a permanent table, TELBOOK, to contain the variable
TABKEY and other variables, the names of which are specified in program variable
TABVARS. The variable TABVARS has been made accessible to ISPF by a previous
VDEFINE operation. The key field is TABKEY. Set the program variable BUFFER
to contain:
TBCREATE TELBOOK KEYS(TABKEY) NAMES(&TABVARS)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBCREATE’,’TELBOOK ’,’TABKEY ’,TABVARS);

TBCREATE

Chapter 2. Description of the ISPF services 231

Example 3
In a PL/I program, create a permanent non-keyed table, NKTBL, where FNAME,
LNAME, PHONE, and LOC are the non-key table variables.
CALL ISPLINK (’TBCREATE’,’NKTBL ’,’ ’,

’(FNAME LNAME PHONE LOC)’);

TBDELETE—delete a row from a table
The TBDELETE service deletes a row from a table.

For tables with keys, the table is searched for the row to be deleted. The current
contents of the key variables, dialog variables that correspond to keys in the table,
are used as the search argument. If the table has no keys, the row is determined by
the current position of the CRP.

For tables without keys, the row pointed to by the current row pointer (CRP) is
deleted.

The CRP is always updated to point to the row before the one that was deleted.

Command invocation format

�� ISPEXEC TBDELETE table-name ��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('TBDELETE' , table-name); ��

Parameters
table-name

Specifies the name of the table from which the row is to be deleted.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

8 Keyed tables: The row specified by the value in key variables does not
exist; CRP set to TOP (zero). Non-keyed tables: CRP was at TOP (zero) and
remains at TOP.

TBCREATE

232 z/OS V2R2 ISPF Services Guide

12 Table is not open.

20 Severe error.

Example
Delete a row of the table TELBOOK.
ISPEXEC TBDELETE TELBOOK

Set the program variable BUFFER to contain:
TBDELETE TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBDELETE’,’TELBOOK ’);

TBDISPL—display table information
The TBDISPL service combines information from a panel definition with
information stored in an ISPF table. It displays all or certain rows from the table,
allowing the application user to scroll the information up and down.

When only certain rows from a table are to be displayed, the TBSARG service is
used to define the selection criteria before issuing TBDISPL. Only search
arguments established by TBSARG that specify a forward scan through the table
(for example, TBSARG specifying the keyword NEXT, either explicitly or
implicitly) should be used. In this case, ROWS(SCAN) must be specified on the
)MODEL statement in the panel definition.

TBDISPL can produce a display of a table based on a search argument that
specifies a backward scan; that is, PREVIOUS on the TBSARG request and
ROWS(SCAN) specified on the)MODEL header statement. This would display the
table from bottom to top. Top to bottom is the normal table display. However,
because TBDISPL does not support scrolling for the bottom-to-top case, scrolling
results are unpredictable.

The format of the display is specified by a panel definition, which TBDISPL reads
from the panel library. The panel definition specifies the fixed (non-scrollable)
portion and the scrollable portion of the display. The fixed portion contains the
command field and commonly the scroll amount field. It can also include other
input fields as well as text, output fields, dynamic areas and a graphic area.

The scrollable portion is defined by up to eight “model” lines. They indicate which
table fields are to be displayed.

Each line of scrollable data can have one or more input (unprotected) fields, as
well as text and output (protected) fields. The user can modify the input fields in
the scrollable or fixed portions.

Before TBDISPL is invoked, the table to be displayed must be open, such as
TBOPEN, and the current row pointer (CRP) positioned to the row at which the
display is to begin, such as TBTOP (automatic following TBOPEN), TBBOTTOM,
or TBSKIP. When CRP is pointing to the top of the table, it has a value of 0. It is

TBDELETE

Chapter 2. Description of the ISPF services 233

treated as though the CRP were pointing to the first row. Do not attempt to use
TBDISPL to display a command table currently in use. This might produce
unpredictable results.

The scrollable portion of the display is formed by replicating the model lines from
the panel definition enough times to fill the screen. Each of these replications is
known as a model set. Table rows are then read to fill in the appropriate fields in
the model set replications. Each table row corresponds to a model set.

The table that is displayed in a panel's scrollable area can be built dynamically by
the application. This is useful for applications involving large amounts of data that
users might wish to access to varying extents. The application can provide a
relatively small table as a starter, then expand the table as users scroll beyond the
top or bottom table row.

When the user enters data into a model set, the corresponding table row is said to
be selected for processing. The user can select several rows. The data must be
modified to select the model set. If you simply overtype the existing model set
with the same data, the model set is not considered to be selected.

TBDISPL itself does not modify the table. The dialog function can use the
information entered by the user to determine what processing is to be performed,
and can modify the table accordingly.

TBDISPL operation
TBDISPL allows the user to scroll the data up and down and enter information in
the input fields in the scrollable or fixed portions.

TBDISPL operation depends on whether a)REINIT or)PROC section is included in
the panel definition. When a)REINIT or)PROC section is included, and if the user
makes no modification to the screen and presses the Enter key, TBDISPL returns
control to the dialog function. On the other hand, if neither a)REINIT nor a
)PROC section is included and if the user makes no modification to the screen and
presses the Enter key, TBDISPL treats this as a “no operation” and control does not
return to the dialog function. This is for compatibility with the previous version of
the product.

During a display of a panel using TBDISPL, any of these user actions will result in
control returning to the dialog function:
v Typing no input and pressing the Enter key, assuming that a)REINIT or)PROC

section exists in the panel definition
v Typing data into the fixed or scrollable portion of the display and pressing the

Enter key
v Typing data into the fixed or scrollable portion of the display and entering the

UP or DOWN command
v Entering the END or RETURN command
v Scrolling UP or DOWN with scroll return to function defined and not enough

table rows to handle the scroll request.

Operational results from user actions
These user actions will not result in control returning to the dialog function:
v Typing no input and pressing the Enter key (assuming that neither a)REINIT

nor a)PROC section exists in the panel definition).

TBDISPL

234 z/OS V2R2 ISPF Services Guide

v Typing no input and entering the UP or DOWN command. This is true if scroll
return to function is not defined, but there are enough rows to satisfy the scroll
request.

v Entering a system command other than UP, DOWN, END, or RETURN. For
example, HELP, SPLIT, or CURSOR.

v Entering an application command that SELECTs another dialog.

After display of a panel using TBDISPL, and before control returns to the dialog
function:
1. The contents of all input fields in the fixed portion are stored in the dialog

variable specified in the panel definition.
2. If there were no selected rows to process, the CRP is set to TOP (zero) and the

variable values are unpredictable. If scroll return to function is defined and
rows are needed to satisfy the scroll request, the scroll return system variables
are set in the function pool.

3. If there were any selected rows, the CRP is positioned to the first of these, and
the row is retrieved from the table. The values of all variables from that row
are stored into the corresponding dialog variables. All input fields in the
selected model set on the display are then stored in the corresponding dialog
variables. The input fields can or cannot correspond to variables in the table.
Variable ZTDSELS contains the number of rows that were selected. The value
of ZTDSELS can be checked in the)PROC section of the panel definition, or it
can be checked by the dialog function.

4. The row number that corresponds to the first model set currently displayed on
the screen is stored in the system variable ZTDTOP. If, in a dialog, you want to
reposition the scrollable data as the user last saw it, you must reposition the
CRP to the row number stored in ZTDTOP before reinvoking the TBDISPL
service with the panel name specified. This is not necessary if the panel name
is not specified.

ZTDTOP and ZTDSELS variables
ZTDTOP and ZTDSELS are variables in the function pool. A command procedure
can access them directly. A program can access them through use of the VDEFINE
or VCOPY service. If a program function uses the VCOPY service to access the
variable, the value will be in character string format. It will not be in fixed binary
format.

If the application user selected more than one row in a single interaction, the
variable ZTDSELS is 2 or greater, which indicates that selected rows remain to be
processed. These rows are called pending selected rows. A call to TBDISPL is
required to position the CRP to each pending selected row, retrieve the row from
the table, and store input fields from the corresponding model set. After the CRP is
positioned to each selected row, the function can process the row, for example, by
issuing a TBPUT request to update the table. For these calls, neither the
panel-name nor the message-id should be specified. The processing sequence for
each of these calls is as described previously, except that the next selected row is
processed.

Whenever selected rows remain to be processed, the dialog can choose to ignore
them by calling TBDISPL with a specified (nonblank) panel name. This clears out
any remaining information about previous calls. If the dialog wants to display
another screen before processing pending selected rows from the first display, it
must invoke the CONTROL service to save and restore the display environment.

TBDISPL

Chapter 2. Description of the ISPF services 235

|
|

Note: Table display service system variables, ZTD*, are not saved as part of the
CONTROL DISPLAY SAVE/RESTORE information. The values of these variables
may be saved by the dialog developer and restored before resuming processing of
the initial table display.

Command invocation format

�� ISPEXEC TBDISPL table-name
PANEL(panel-name) MSG(message-id)

�

�
CURSOR(field-name) CSRROW(table-row-number)

�

�
CSRPOS(cursor-position) YES

AUTOSEL(NO)
POSITION(crp-name)

�

�
ROWID(rowid-name) MSGLOC(message-field-name)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('TBDISPL�' , table-name , panel-name
'�'

�

� , message-id
'�'

, field-name
'�'

, table-row-number
'�'

�

� , cursor-position
'�'

'YES�����'
, '�'

'NO������'
, crp-name

'�'
, rowid-name

'�'
�

� , message-field-name);
'�'

��

Parameters
table-name

Specifies the name of the table to be displayed.

panel-name
Specifies the name of the panel to be displayed.

message-id
Specifies the identification of a message to be displayed on the panel.

TBDISPL

236 z/OS V2R2 ISPF Services Guide

field-name
Specifies the name of the field where the cursor is to be placed on the display.
Any setting of the .CURSOR control variable done in the panel definition takes
precedence over this parameter.

table-row-number
Specifies the table row number (CRP number) corresponding to the model set
on the display where the cursor is to be placed. For a call, this parameter must
be a fullword fixed binary number.

Specifying the CSRROW parameter without specifying AUTOSEL(NO) results
in the row being retrieved, even if the user did not explicitly select the row.
This is called auto-selection.

If the specified row does not have a corresponding model set in the logical
table display (the logical table display includes model sets not displayed
because of split-screen, PFSHOW, or floating command line), the cursor is
placed at the command field. No auto-selection is performed.

Any setting of the .CSRROW control variable done in the panel definition takes
precedence over this parameter.

cursor-position
Specifies the position within the field where the cursor is to be placed. This
position applies regardless of whether the initial cursor placement was
specified in the CURSOR calling sequence parameter, the .CURSOR control
variable in the)INIT or)REINIT section of the panel, or is the result of default
cursor placement. If cursor-position is not specified or is not within the field,
the default is 1.

Any setting of the .CSRPOS control variable done in the panel definition takes
precedence over this parameter.

AUTOSEL(YES |NO)
YES specifies that if the CSRROW(table-row-number) parameter is specified or
if .CSRROW is set within the)INIT or)REINIT section, the row is to be
retrieved, even if the user did not explicitly select the row. This is known as
auto-selection.

NO specifies that even if the CSRROW(table-row-number) parameter is
specified or if .CSRROW is set within the)INIT or)REINIT section, the row is
to be retrieved only if the user explicitly selects the row by entering data into
the corresponding model set.

If the CSRROW parameter or the .CSRROW control variable is not specified,
the AUTOSEL parameter is ignored.

Any setting of the .AUTOSEL control variable done in the panel definition
takes precedence over this parameter.

crp-name
Specifies the name of a variable in which the row number pointed to by the
CRP is to be stored. If the CRP is positioned to TOP, the row number returned
is zero.

rowid-name
Specifies the name of a variable in which a number that uniquely identifies the
row being accessed is to be stored. Later, this identifier can be specified in the
ROW parameter of TBSKIP to cause the CRP to be positioned to the row. This
identifier is not saved on permanent storage by TBSAVE or TBCLOSE. The
variable must be an 8-byte character field.

TBDISPL

Chapter 2. Description of the ISPF services 237

message-field-name
Used to position the message pop-up window. If the application specifies this
parameter, the Dialog Manager positions the message pop-up relative to the
named field.

If this parameter is omitted and a message is displayed in a message pop-up
window, the window is displayed at the bottom of the logical screen or below
the active ADDPOP pop-up window if one exists.

For compatibility with later versions, this parameter should be specified only
when the message will display in a pop-up window.

Note: When running in GUI mode, this parameter is ignored.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Parameter processing
The panel-name and message-id parameters are optional. They are processed as
follows:
v If panel-name is specified and message-id is not specified, the panel definition is

retrieved, rows from the table are read, starting at the CRP, to fill the screen, and
the screen is displayed without a message. Any information from previous
TBDISPL calls, such as pending scroll requests or pending selected rows, is
cleared.

v If panel-name and message-id are both specified, the panel definition is
retrieved, rows from the table are read to fill the screen, and the screen is
displayed with the specified message.

v If panel-name is not specified and message-id is specified, the current table
display is overlaid with a message, without rebuilding the screen or rereading
the table.

v If neither panel-name nor message-id is specified, the processing depends on
whether there are selected rows remaining to be processed. If no selected rows
remain to be processed: If the application user's last action was to:
– Press the Enter key, then rows from the table are again read to fill the screen

and the screen is redisplayed.
– Enter a scroll command, then the scroll function is now honored by reading

and displaying the appropriate rows from the table.
– Enter an END or RETURN command, then the CRP is set to TOP (zero) and

control returns to the function issuing the TBDISPL with a return code of 8. If
this occurs more than once in immediate succession, a return code of 20 is
issued, since the application can be in a loop.

If there are selected rows remaining to be processed, the CRP is positioned to the
first of these, the row is retrieved from the table, and input fields from the
selected model set are stored.

Use the CONTROL service to save and restore the environment when a TBDISPL
series, in which panel-name is not specified, is to be interrupted by another
TBDISPL, DISPLAY, BROWSE, or EDIT operation.

TBDISPL

238 z/OS V2R2 ISPF Services Guide

The CURSOR and CSRROW parameters are optional. Their processing is as
follows:
v If the CURSOR parameter is not specified but the CSRROW parameter is

specified, the cursor is placed on the first field in the specified row.
v If the CURSOR parameter is specified, but the CSRROW parameter is not

specified or is specified with a value of zero, the current value of the CRP
determines the row location, and the cursor is placed in this row on the field
specified by the CURSOR parameter. A value of zero in the CRP places the
cursor on the command line.

v If neither the CURSOR nor the CSRROW parameter is specified, the cursor is
placed at the command field.

v If both the CURSOR and CSRROW parameters are specified, the cursor is placed
at the field specified by the CURSOR parameter within the model set
corresponding to the table row specified by the CSRROW parameter.

v Whenever the CSRROW parameter is specified without specifying
AUTOSEL(NO), the row is retrieved, even if the user did not modify that row.
This allows the dialog developer to force the user to correct an error on that row
before going on to process other rows.

v Any setting of the .CURSOR and the .CSRROW control variables done in the
panel definition takes precedence over the CURSOR and CSRROW parameters.

Return codes
These return codes are possible:

0 If the panel definition contains neither a)REINIT nor a)PROC section, the
Enter key was pressed, or a scroll command was entered. Any of these
occurred:
v One row was selected in the scrollable part of the display. The CRP is set

to point to that table row and the row is retrieved. The input fields from
the selected model set on the display are then stored in the function
pool.

v The user entered information into the fixed portion of the display.
v All of these:

– A scroll return to function has been specified (ZTDRET defined to UP,
DOWN, or VERTICAL).

– More rows are needed to fill a scroll request.
– No selected rows remain to be processed.

If the panel definition contains a)REINIT or)PROC section, there is the
additional possibility that the user entered no information and just pressed
the Enter key.

4 The Enter key was pressed or a scroll command was entered. The first or
both of these occurred:
v Two or more rows in the scrollable part of the display were selected. The

CRP is set to the first selected row and the row is retrieved. The input
fields from the selected model set on the display are then stored in the
function pool.

v The user entered information into the fixed portion of the display.
v If scroll return to function has been specified, and two or more rows are

selected for processing, TBDISPL returns a return code 4 until all
selected rows are processed. You process the request for more rows to be

TBDISPL

Chapter 2. Description of the ISPF services 239

added to the table only after all selected rows have been processed; that
is, only when ZTDSELS has a value of 0.

For subsequent TBDISPL requests with no panel name and no message-id,
return code 4 is issued for each request until one selected row remains to
be accessed. For this last row, a return code of zero is issued by TBDISPL,
still specified with no panel name and no message-id. The variable
ZTDSELS will have a value of one.

8 The END or RETURN command was entered. For panels created by the
conversion utility, CANCEL and EXIT commands also give return code 8.
If CANCEL and EXIT is requested from a panel displayed using TBDISPL
service calls and the panel was defined with Dialog Tag Language (DTL),
the dialog manager returns the command in ZVERB and sets a return code
of 8 from the display screen. The CRP is set to the first of any selected
rows in the scrollable part of the display. The input fields from the selected
model set on the display are then stored in the function pool.

If no rows were selected, the CRP is at the top (zero).

To process all selected rows when END or RETURN was entered, continue
to issue TBDISPL requests with no panel name or message-id specified
until ZTDSELS is one.

If you enter the END command on a table display panel, a subsequent
redisplay will result in a return code of 8.

The user might have entered information into the fixed portion of the
display.

12 The specified panel, message, cursor field, or message location field could
not be found.

16 Truncation or translation error in storing defined variables.

20 Severe error.

Example
Display the table TELBOOK using panel definition TPANEL2 to format the display.
ISPEXEC TBDISPL TELBOOK PANEL(TPANEL2)

Set the program variable BUFFER to contain:
TBDISPL TELBOOK PANEL(TPANEL2)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBDISPL ’,’TELBOOK ’,’TPANEL2 ’);

System variables related to TBDISPL
If a program function uses the VCOPY service to access a variable, the value will
be in character string format. It will not be in fixed binary format.

System variables used with TBDISPL processing are:

ZTDMARK
Specifies an alternate bottom-of-data marker. ZTDMARK is created by the

TBDISPL

240 z/OS V2R2 ISPF Services Guide

dialog and can reside in any variable pool. It is an input variable, whose
length can be equal to or less than the screen width. If ZTDMARK exists,
its value is used as the marker. If ZTDMARK does not exist, the default
marker of “BOTTOM OF DATA” with asterisks on each side is used.

For example, this assignment could be made in the)INIT section of a table
display panel:
&ZTDMARK = ’----> End of Data <----’

ZTDMARK can be blank. That is, this assignment is valid:
&ZTDMARK = ’ ’

In this case a bottom-of-data marker would not appear on the screen.

ZTDMSG
Specifies the ID of a message to be used as an alternate top-row-displayed
indicator. ZTDMSG is created by the dialog and can reside in any variable
pool. It is an input variable whose length is 8.

If ZTDMSG exists, TBDISPL invokes the GETMSG service to get the short
message and long message text. If the short message exists and is
nonblank, it is used as the top-row-displayed indicator. If the short
message does not exist, the long message text is used as the
top-row-displayed indicator. In both cases, the current values of any
variables in the message are placed in the message and the text is placed
right-justified on the top line of the display.

If ZTDMSG does not exist, the long form of message ISPZZ100 is used.

The text used for the top-row-displayed indicator is summarized in the
z/OS V2R2 ISPF Dialog Developer's Guide and Reference.

A message ID whose short and long message text is blank (' ') or the null
variable (&Z) can be assigned to ZTDMSG. In this case, the table display
would not have a top-row-displayed indicator.

No top row is displayed if the user attempts to:
v Display an empty table
v Scroll past the bottom row
v Specify no rows matching the TBSARG criteria and ROWS(SCAN) is

specified on the)MODEL statement of the panel definition.

In this case, message ISPZZ101 is used for the top-row-displayed indicator.
This has no short message text, and the long message text is '&Z'.

ZTDROWS
Created by TBDISPL to indicate the number of rows in the table most
recently displayed. It resides in the function pool. It is an output variable
whose length is 6. Unless it has been defined otherwise by a program
function, ZTDROWS is 6 characters long and will have leading zeros, if
necessary.

ZTDSELS
Created by TBDISPL to indicate the number of selected rows. It includes
the current selected row, if one exists, and any pending selected rows.
ZTDSELS resides in the function pool. It is an output variable whose
length is 4. Unless it has been defined otherwise by a program function,
ZTDSELS is 4 characters long and will have leading zeros if necessary.

TBDISPL

Chapter 2. Description of the ISPF services 241

ZTDTOP
Created by TBDISPL to indicate the table row number of the top row
displayed. ZTDTOP resides in the function pool. It is an output variable
whose length is 6. Unless it has been defined otherwise by a program
function, ZTDTOP is 6 characters long and will have leading zeros if
necessary.

ZTDVROWS
Returns the number of visible rows available from the most recent table
display. Only complete model sets are counted, so if a model set spans
multiple lines and not all of the lines are visible, it is not counted.
ZTDVROWS is set to zero if no complete model sets are visible.
ZTDVROWS resides in the function pool. It is a six character output pool
variable and will have leading zeros if necessary.

System variables ZTDRET, ZTDADD, ZTDSCRP, ZTDLTOP, ZTDLROWS,
ZTDSRID, ZTDAMT, and ZTDSIZE are used exclusively when dynamically
building the table being displayed.

Table display service system variables, ZTD*, are not saved as part of the
CONTROL DISPLAY SAVE/RESTORE information. The values of these variables
may be saved by the dialog developer and restored before resuming the processing
of the initial table display. Also, the ZVERB is not saved.

Panel control variables related to TBDISPL
Control variables used with TBDISPL processing are as follows:

.AUTOSEL
The variable version of the AUTOSEL parameter. It can be assigned “YES”,
“NO”, or a blank in the)INIT or)REINIT sections. Any assignment made
to .AUTOSEL in the)PROC section is ignored.
v YES indicates that auto-selection should be performed if the CSRROW

parameter is specified and the user does not explicitly select the row.
v NO indicates that auto-selection should not be performed.
v Specifying a blank value is the same as specifying YES, with one

exception: if there are no input fields in the model lines, auto-selection
will occur only if YES is explicitly specified.

Any setting of this variable takes precedence over the AUTOSEL
parameter.

.CSRROW
The variable version of the CSRROW parameter. It can be assigned the
table row number (CRP number) corresponding to the model set on the
display where the cursor is to be placed. Any setting of this variable takes
precedence over the CSRROW parameter.

Parameter variables related to TBDISPL
Variable names can be specified as TBDISPL parameters, as follows:

POSITION(crp-name)
Specifies the name of the variable in which TBDISPL is to store the row
number (CRP number) of the current selected row. If there are no selected
rows, the CRP will be at the top and the row number returned is zero.

ROWID(rowid-name)
Specifies the name of the variable in which TBDISPL is to store the rowid
of the current selected row.

TBDISPL

242 z/OS V2R2 ISPF Services Guide

The difference between a CRP number and a rowid is as follows:
v A CRP number is an ordinal number; that is, the first row has a CRP number of

00000001, the second row has a CRP number of 00000002, and so on. CRP
numbers are associated with “slots” in a table, rather than particular rows. If a
new row is inserted after the first row, that new row now has a CRP number of
00000002. What had been row 00000002 is now row 00000003, what had been
row 00000003 is now row 00000004, and so on.

v A rowid is a nominal value that uniquely identifies a row. This value stays with
the row, even if the row has other rows inserted before it. Note, however, that
this identifier is not saved on permanent storage by the TBSAVE or TBCLOSE
service.

Using TBDISPL with other services
Consider these items when using TBDISPL with other services:
1. CONTROL DISPLAY LOCK

This service specifies that the next display output is to leave the user's
keyboard locked as the panel is displayed, and ISPF is to simulate an ENTER.
This facility can be used to generate crude animation or display an “in process”
message during a long-running operation.
Table displays done in conjunction with this service should display panels that
have a)REINIT or)PROC section. Otherwise, the simulated ENTER is treated
as a no-operation, as described under “TBDISPL summary” on page 257.

2. CONTROL DISPLAY SAVE and CONTROL DISPLAY RESTORE
If the dialog wants to invoke a display service (BROWSE, EDIT, DISPLAY,
another TBDISPL) before processing pending selected rows, it must invoke the
CONTROL DISPLAY service to save and restore the current TBDISPL series
environment.
The dialog should invoke CONTROL DISPLAY SAVE before the non-TBDISPL
series display service and CONTROL DISPLAY RESTORE after the
non-TBDISPL series display service. For example:

Service
Description

TBOPEN TAB1
Open the table

TBDISPL TAB1 PANEL(PAN1)
Display the table and panel

CONTROL DISPLAY SAVE
Save control information about PAN1

DISPLAY PANEL(PAN2)
Display a second panel

DISPLAY PANEL(PAN3)
Display a third panel

CONTROL DISPLAY RESTORE
Restore control information about PAN1

TBDISPL TAB1
Reinvoke TBDISPL to process the next selection or redisplay the table
and panel

CONTROL DISPLAY SAVE
Again save control information about PAN1

TBDISPL

Chapter 2. Description of the ISPF services 243

DISPLAY PANEL(PAN2)
Display the second panel again

DISPLAY PANEL(PAN3)
Display the third panel again

CONTROL DISPLAY RESTORE
Again restore control information about PAN1

TBDISPL TAB1
Reinvoke TBDISPL to process the next selection or redisplay the table
and panel

3. BROWSE, EDIT, and DISPLAY
See item 2 on page 243.

4. Command Tables
Do not attempt to use TBDISPL to display a command table currently in use.
The results would not be predictable.

5. TBSARG
When only certain rows from a table are to be displayed, the TBSARG service
must be invoked before issuing TBDISPL to establish the search criteria. The
search criteria should specify a forward scan through the table. In this case,
ROWS(SCAN) must be specified on the)MODEL statement in the panel
definition.

6. TBSORT
The TBSORT service can be used freely with the TBDISPL service, even during
a TBDISPL series. Note, however, that the pending selected rows will be
processed in their original order; that is, in the order they would have been
processed had the dialog not invoked the TBSORT service.

Techniques for using the TBDISPL service
These techniques can be applied in programs and command procedures using the
TBDISPL service.
1. Displaying Only Certain Rows

When only certain rows from a table are to be displayed, the TBSARG service
must be invoked before issuing TBDISPL to establish a search criteria. The
search criteria should specify a forward scan through the table. In this case,
ROWS(SCAN) must be specified on the)MODEL statement in the panel
definition.

2. Displaying Table Extension Variables
As TBDISPL creates the scrollable portion of the display, it reads rows from the
table and fills in fields in the model sets with their current values. If a field in a
model line is an “extension” variable in the table and does not exist in all rows,
TBDISPL repeats its value in model sets to which it does not apply. To prevent
this, use the CLEAR(var-name, var-name, ...) keyword on the)MODEL
statement. This keyword sets to blank the specified variables before each row is
read from the table to fill the scrollable portion.

3. Clearing Already-Processed Select Fields
As the TBDISPL service is reinvoked to process pending selected rows, the
dialog may set to blank the select field for successfully processed rows. This is
useful in case there is a redisplay with an error message. The already processed
select fields will be blank and the not-yet-processed select fields will still have
the user-entered data in them.

TBDISPL

244 z/OS V2R2 ISPF Services Guide

Having these statements in the)REINIT section of the panel definition could
achieve this:
If (.msg=’ ’)

&Select=’ ’
Refresh(Select)

where “Select” represents the name of any field in the panel that the dialog
wants to clear. The previous three statements shown could be on one line. For
example:
If (.msg=’ ’) &Select=’ ’ Refresh(Select)

4. Using Auto-Selection
Consider this situation:
v The user has entered invalid data in the select field.
v The panel is redisplayed with an error message.
v The user does not change the invalid data but performs some action that

results in control returning to the dialog function.

The model set with the invalid data was not user-selected. If the dialog wants
to ensure that the user corrects the invalid data, it should use auto-selection in
this situation. That is, the CSRROW parameter or control variable should be
specified, and the AUTOSEL parameter or control variable should be blank or
YES. This will result in the specified row being selected even if the user did not
explicitly select it by modifying the corresponding model set on the display.
The auto-selection feature is normally used when the cursor is placed at invalid
data in the scrollable portion and there is an error message displayed. It is not
used when the cursor is placed in the scrollable portion for informational
purposes.
If the auto-selected row is not displayed on the logical screen because of split
screen, PFSHOW, or a floating command line, the cursor is placed at the
command field. The dialog should ensure that the user is aware of the
auto-selected row by issuing a message when specifying table-row-number.

5. Controlling the Top Row Displayed
As discussed previously, the user can issue the UP or DOWN command to
scroll during a TBDISPL display. Scrolling changes the row that is displayed at
the top of the scrollable portion. This topic discusses how the dialog function
controls the top row displayed.
In a typical table display dialog, the TBDISPL service is invoked repeatedly in a
loop. The first call results in a display (“the first display”). Subsequent calls can
produce a display (“subsequent displays”) or can process pending selected
rows (“no display”).
Controlling the Top Row Displayed in a “First Display”
The TBDISPL service must be invoked with the PANEL parameter specified to
obtain a “first display”. In this case, the current row is the top row displayed.
For convenience, a table with its CRP at TOP is treated as though the current
row was row 1. The dialog can use any of the services that move the CRP, such
as TBSKIP or TBTOP, to make the desired table row the current row.
Controlling the Top Row Displayed in a “Subsequent Display”
There are three ways to produce a “subsequent display”:
a. Invoke TBDISPL with the PANEL parameter specified.
b. Invoke TBDISPL without the PANEL parameter specified, but with the MSG

parameter or .MSG control variable specified.

TBDISPL

Chapter 2. Description of the ISPF services 245

c. Invoke TBDISPL without the PANEL parameter specified and without the
MSG parameter, or .MSG control variable, specified when there are no
pending selected rows.

In the first case, the current row is the top row displayed. The system variable
ZTDTOP contains the row number of the top row displayed on the previous
TBDISPL display. This technique can be useful to control the top row displayed:
TBTOP table /* Set CRP to TOP */
TBSKIP table NUMBER(&ZTDTOP) /* Set CRP to previous */

/* top row displayed */
VGET (ZVERB ZSCROLLN) /* Retrieve variables */
Select /* Determine Case */
When &ZVERB = ’UP’ Then /* - When scroll UP req */
TBSKIP table NUMBER(-&ZSCROLLN)/* skip back toward top */
When &ZVERB = ’DOWN’ Then /* - When scroll DOWN req*/
TBSKIP table NUMBER(&ZSCROLLN) /* skip forward */
Otherwise /* - Otherwise, not a */
End /* scroll request */

/* */
TBDISPL table PANEL(panel) /* Disp the table and pnl*/

In the second case, the top row displayed is the same as that displayed on the
previous display. That is, the previous image is “redisplayed” as the user last
saw it, except that the specified message is also shown. Certain fields can have
been refreshed and the cursor can be in a different place.
In the third case, any pending scroll request is honored. That is, if the user had
entered any data and issued a scroll request on a previous TBDISPL display,
that scroll request is now honored. If no scroll request was pending, the top
row displayed is whatever it was on the previous display.

6. Using Variable Model Lines
Model lines can be specified dynamically through the use of variable model
lines. That is, the attribute characters and field names are not specified in the
model section. Instead, a variable whose value contains the attribute characters
and field names is specified in column one of the model line.

Rules applying to variable model lines
Here are some rules that apply to variable model lines:
v The variable must begin in column 1.
v The variable must be the only data on the model line.
v The length of the value of the variable must not be greater than the screen

width.
v The variable must be initialized before the panel is displayed. It is not acceptable

to initialize the variable in the)INIT section of the panel definition.
v The variable is retrieved from the function pool only once for each TBDISPL

with a nonblank panel name. This means that the same model line, including
attribute settings, will be in effect for all rows displayed by the TBDISPL.

v Changes to the variable that occur within the panel or dialog function are not
honored until TBDISPL is invoked again with a nonblank panel name.

v A variable whose value is blank is acceptable.
v If the variable contains the character string “OMIT” in uppercase, lowercase, or

in mixed case, starting in column one, then that variable model line will not be
used.

v There can be from one to eight model lines. Some can be variable model lines
and others can be explicitly specified.

v “Z” variables used as name placeholders are acceptable in variable model lines.
Be sure to assign an appropriate value to .ZVARS in the)INIT section.

TBDISPL

246 z/OS V2R2 ISPF Services Guide

v If the SFIHDR keyword is specified on the)MODEL header statement, the first
variable model line is assumed to define scroll indicator fields for scrollable
fields that are defined on subsequent variable model lines.

Example—panel using variable model lines
Figure 7 is the panel definition for a panel named VARMOD. Figure 8 on page 248
and Figure 9 on page 248 are two possible types of TBDISPL displays using panel
VARMOD.

Before panel VARMOD is displayed, the dialog function must initialize the variable
model lines as follows:

This panel is designed to be displayed in a loop. That is, the TBDISPL service is
invoked repeatedly to display the table and panel until the user enters the END or
RETURN command.

)Attr
| Type(input) Intens(high) Just(left) Caps(on) Pad(’’)
$ Type(&type) Intens(low) Just(left) Caps(off) Padc(’_’)
ø Type(&type) Intens(low) Just(left) Caps(on) Padc(’_’)

)Body Expand(//)
%--/-/-- Customer Information --/-/--
%Command ===>_cmdfld / / +Scroll ===>_amt +
+
+ Show Address? ==>_QAD+(Yes or No)
+ Allow Update? ==>_QUP+(Yes or No)
+
%Select
%Code Account Name &TITLE2
)Model
&MDL1
&MDL2
&MDL3
)Init

&amt=page
If (&QAD=’ ’) &QAD=NO
If (&QUP=’ ’) &QUP=NO
If (&QUP=’YES’) &TYPE=’Input’
If (&QUP=’NO’) &TYPE=’Output’
If (&QAD=’YES’) .ZVARS=’(State)’

)Proc
&QAD = Trans(Trunc(&QAD,1) Y,YES N,NO ’ ’,NO *,*)
Ver(&QAD,List,YES,NO)
&QUP = Trans(Trunc(&QUP,1) Y,YES N,NO ’ ’,NO *,*)
Ver(&QUP,List,YES,NO)

If (&QAD=’YES’)
&TITLE2=’and Address’
&MDL1=’|SCODE+øAccount+ $Name +’
&MDL2=’ $Address +

$City + øZ +’
&MDL3=’%================================+

===’
If (&QAD=’NO’)

&TITLE2=’ ’
&MDL1=’|SCODE+øAccount+ $Name +’
&MDL2=’OMIT’
&MDL3=’OMIT’

)End

Figure 7. Variable Model Lines: Panel Definition

&MDL1=’|SCODE+øAccount+ $Name +’
&MDL2=’OMIT’
&MDL3=’OMIT’

TBDISPL

Chapter 2. Description of the ISPF services 247

When the panel is displayed, the user can set the “Show Address?” field (QAD) to
YES or NO. If this field is NO (the default), only one model line is used, which
shows the customer's account number and name. If this field is YES, three model
lines are used. The first remains unchanged; the second is the customer's street
address, city, and state; and the third contains divider lines. Also, the variable
&TITLE2, which appears in the)BODY section, is set to a nonblank value. This is
used as part of the column heading for the scrollable portion.

----------------------------- Customer Information ----------------- ROW 1 OF 8
Command ===> Scroll ===>
Show Address? ==> NO (Yes or No)
Allow Update? ==> NO (Yes or No)

Select
Code Account Name
’’ KC10001 Rogers, Kelly
’’ KC10002 Holloway, Rich
’’ KC10003 Holmes, Karen
’’ KC10004 Jones, Ann
’’ KC10005 Donavan, Harold
’’ KC10006 Bentley, Chris
’’ KC10007 Seabold, Matthew
’’ KC10007 Fitzgerald, Therese
******************************* BOTTOM OF DATA *********************************

Figure 8. Variable Model Lines: Display 1

----------------------------- Customer Information ----------------- ROW 1 OF 8
Command ===> Scroll ===>
Show Address? ==> NO (Yes or No)
Allow Update? ==> NO (Yes or No)

Select
Code Account Name and Address
’’ KC10001 Rogers, Kelly

253 Main St Junction City KS
===
’’ KC10002 Holloway, Rich

2810 Curtis Lane Long Beach CA
==
’’ KC10003 Holmes, Karen

3600 Chestnut St Hyannis MA
==
’’ KC10004 Jones, Ann

212 Fallon Ave North Hudson NY
==
’’ KC10005 Donavan, Harold

180 Berthold Ave Baton Rouge LA

Figure 9. (Part 1 of 2). Variable Model Lines: Display 1

TBDISPL

248 z/OS V2R2 ISPF Services Guide

Panel definition VARMOD has a number of features besides variable model lines:
v It is in mixed case to improve readability.
v The TYPE attribute of the fields ACCOUNT and NAME, as well as ADDRESS,

CITY, and STATE, when they are shown, is a variable. When the user sets the
“Allow Update?” field (QUP) to NO (the default), the customer information
fields (ACCOUNT, NAME, ...) become output fields. That is, they are protected
and cannot be updated.
When the “Allow Update?” field is set to YES, the customer information fields
become input fields. The user could then update the displayed information and
the dialog function would update the table.

v The title line makes use of the expand character defined on the)BODY
statement. This is a convenient way to center the title text. The command line
also uses the expand character.

v Many of the lines in the executable sections, here the)INIT and)PROC sections,
have more than one statement in them. This saves space and improves
readability.

v The first two assignments of &MDL2 and &MDL3 make use of the continuation
character “+”. This is convenient to use when assigning long strings to a
variable.

Example—scroll indicator field in first variable model line
Figure 11 on page 250 shows the panel definition for panel SFIMOD, which is
similar to the previous example but uses variable model lines and the SFIHDR
keyword on the)MODEL statement to define scrollable fields and scroll field
indicators in the model section.

==
’’ KC10006 Bentley, Chris

South Mountain Pass Ashland NH
==
’’ KC10007 Seabold, Matthew

42 Dragonica Way Newark DE
==
’’ KC10008 Fitzgerald, Therese

67 Waimea Blvd Naalehu HI
==
******************************* BOTTOM OF DATA *********************************

Figure 10. (Part 2 of 2). Variable Model Lines: Display 2

TBDISPL

Chapter 2. Description of the ISPF services 249

With the SFIHDR keyword specified on the)MODEL statement, the variable
&MDSI is assumed to define scroll indicator fields for scrollable fields defined in
the variable &MDL1.

Before panel SFIMOD is displayed, the dialog function must initialize the variable
model lines as follows:

&MDSI=’ $Ttlsind +’
&MDL1=’!SCODE+øName +$Docnum +$Title +’

)Attr
! Type(input) Intens(high) Just(left) Caps(on) Pad(’’)
$ Type(&type) Intens(low) Just(left) Caps(off) Padc(’_’)
ø Type(&type) Intens(low) Just(left) Caps(on) Padc(’_’)

)Body Expand(//)
%--/-/-- Publication List --/-/--
%Command ===>_cmdfld / / +Scroll ===>_amt +
+
+ Allow Update? ==>_QUP+(Yes or No)
+ Display format ==>_Z+ 1. Name|Doc. Number|Title
+ 2. Doc. Number|Name|Title
+ 3. Title|Name|Doc. Number
+
%Select
%Code &HDG
)Model sfihdr
&MDSI
&MDL1
)Init

&amt=page
.ZVARS=’(QFM)’
If (&QUP=’ ’) &QUP=NO
If (&QFM=’ ’) &QFM=1
If (&QUP=’YES’) &TYPE=’Input’
If (&QUP=’NO’) &TYPE=’Output’
If (&QFM=’ ’) &TYPE=’Output’
ver(&QFM Range,1,3)
If (&QFM=1)

&HDG=’Name Doc. Number Title’
If (&QFM=2)

&HDG=’Doc. Number Name Title’
If (&QFM=3)

&HDG=’Title Name Doc. Number’
)Proc

&QUP = Trans(Trunc(&QUP,1) Y,YES N,NO ’ ’,NO *,*)
Ver(&QUP,List,YES,NO)
ver(&QFM Range,1,3)
If (&QFM=1)

&HDG=’Name Doc. Number Title’
&MDSI=’ $Ttlsind +’
&MDL1=’!SCODE+øName +$Docnum +$Title +’

If (&QFM=2)
&HDG=’Doc. Number Name Title’
&MDSI=’ $Ttlsind +’
&MDL1=’!SCODE+$Docnum +øName +$Title +’

If (&QFM=3)
&HDG=’Title Name Doc. Number’
&MDSI=’ $Ttlsind + ’
&MDL1=’!SCODE+$Title +øName +$Docnum +’

)Field
FIELD(TITLE) SIND(TTLSIND)
)End

Figure 11. SFIHDR Keyword in Variable Model Lines: Panel Definition

TBDISPL

250 z/OS V2R2 ISPF Services Guide

The Title field in the model section is defined as a scrollable field with a separator
indicator displayed in panel variable &TTLSIND (refer to the field section of the
panel).

With this panel, the user can alter the order in which the fields in the model are
displayed using the “Display format” field (QFM). For example, if the user enters 3
in this field the &MDL1 variable is modified so that the fields are displayed in the
order Title, Name and Doc. Number, and the &MDSI variable is modified so that
the separator indicator field is displayed above the Title field.

Figure 12 shows the panel display when &QFM equals 1.

Figure 13 shows the panel display when &QFM equals 3.

------------------------------- Publication List ----------- Row 1 to 11 of 11
Command ===> Scroll ===> PAGE

Allow Update? ==> NO (Yes or No)
Display format ==> 1 1. Name|Doc. Number|Title

2. Doc. Number|Name|Title
3. Title|Name|Doc. Number

Select
Code Name Doc. Number Title

---------------------------------->
ISPZDG20 SC34-4821-02 z/OS V1R5.0 ISPF Dialog Developer’s
ISPZDT20 SC34-4824-02 z/OS V1R5.0 ISPF Dialog Tag Languag
ISPZEM20 SC34-4820-02 z/OS V1R5.0 ISPF Edit and Edit Macr
ISPZMC20 SC34-4815-02 z/OS V1R5.0 ISPF Messages and Codes
ISPZPC20 GC34-4814-02 z/OS V1R5.0 ISPF Planning and Custo
ISPZRS20 SC34-4816-02 z/OS V1R5.0 ISPF Reference Summary
ISPZSC20 SC34-4817-02 z/OS V1R5.0 ISPF Software Configura
ISPZSG20 SC34-4819-02 z/OS V1R5.0 ISPF Services Guide
ISPZSR20 SC34-4818-02 z/OS V1R5.0 ISPF Software Configura
ISPZUG20 SC34-4822-02 z/OS V1R5.0 ISPF User’s Guide Volum
ISPZU220 SC34-4823-02 z/OS V1R5.0 ISPF User’s Guide Volum

******************************* Bottom of data ********************************

Figure 12. SFIHDR Keyword in Variable Model Lines: Panel Example 1

------------------------------- Publication List ----------- Row 1 to 11 of 11
Command ===> Scroll ===> PAGE

Allow Update? ==> NO (Yes or No)
Display format ==> 3 1. Name|Doc. Number|Title

2. Doc. Number|Name|Title
3. Title|Name|Doc. Number

Select
Code Title Name Doc. Number

---------------------------------->
z/OS V1R5.0 ISPF Dialog Developer’s ISPZDG20 SC34-4821-02
z/OS V1R5.0 ISPF Dialog Tag Languag ISPZDT20 SC34-4824-02
z/OS V1R5.0 ISPF Edit and Edit Macr ISPZEM20 SC34-4820-02
z/OS V1R5.0 ISPF Messages and Codes ISPZMC20 SC34-4815-02
z/OS V1R5.0 ISPF Planning and Custo ISPZPC20 GC34-4814-02
z/OS V1R5.0 ISPF Reference Summary ISPZRS20 SC34-4816-02
z/OS V1R5.0 ISPF Services Guide ISPZSG20 SC34-4819-02
z/OS V1R5.0 ISPF Software Configura ISPZSC20 SC34-4817-02
z/OS V1R5.0 ISPF Software Configura ISPZSR20 SC34-4818-02
z/OS V1R5.0 ISPF User’s Guide Volum ISPZUG20 SC34-4822-02
z/OS V1R5.0 ISPF User’s Guide Volum ISPZU220 SC34-4823-02

******************************* Bottom of data ********************************

Figure 13. SFIHDR Keyword in Variable Model Lines: Panel Example 2

TBDISPL

Chapter 2. Description of the ISPF services 251

Example—using the TBDISPL and TBPUT services
This topic describes the use of the TBDISPL and TBPUT services in a dialog that
displays rows of a table for possible modification by a user.

This dialog invokes the TBDISPL service to display a table named TAB1 with a
panel named PAN1. The)BODY section of the panel definition corresponds to the
fixed (non-scrollable) portion of the display. The)MODEL section of the panel
definition corresponds to the scrollable portion of the display. This is where the
table rows are displayed. The “model lines” in the)MODEL section are replicated
enough times to fill the screen. Each of these replications is known as a model set,
and corresponds to a row of the table. The fields in the model sets correspond to
table columns.

Changes the user wishes to make in TAB1 are entered on the display directly into
fields in the model sets. When the user enters data into a model set, the
corresponding table row is said to be selected for processing.

After the user selects one or more rows, the TBDISPL service locates the first
selected row and retrieves it. To retrieve a row means to position the CRP to that
row, read it, and then store the row values into the function pool. Next, values
from the changed model set are stored in the function pool.

The dialog function then invokes the TBPUT service to write the updated function
pool variables to the table row. A user can also enter data, such as function
commands, into the fixed portion of the display.

The user ends the dialog by entering the END or RETURN command.

This example does not illustrate:
v Logic to insert or delete rows in the table
v Verification of user-entered data by the dialog function or by the)PROC section

in the panel definition
v Controlling cursor placement on the display
v Controlling which is the top row displayed.

The function can be started by a user at a terminal by the ISPSTART command. If
the user has already started ISPF, the function can be started from:
v A menu
v The command field in any display with an application command that is defined

in the current command table to have the SELECT action
v Another function by using the SELECT service.

What follows is first a listing of the complete function, followed by each statement
repeated, with supporting text and figures.

Command procedure function
1. TBOPEN TAB1 WRITE
2. Set &RC = 0
3. Do while &RC < 8
4. TBDISPL TAB1 PANEL(PAN1)
5. Set &RC = return code
6. Process fixed portion input

TBDISPL

252 z/OS V2R2 ISPF Services Guide

7. Do while &PROCFLAG = ON
8. Process scrollable portion input TBPUT TAB1
9. If &ZTDSELS > 1 Then

10. TBDISPL TAB1
11. Else
12. Set &PROCFLAG = OFF
13. End
14. End
15. TBCLOSE TAB1

Description of function steps
1. TBOPEN TAB1 WRITE

Open the table. Read table TAB1 into virtual storage for update. Here are the
contents of table TAB1:

2. Set &RC = 0
Create a variable that will hold the return code from the TBDISPL service. In
this example, the variable is called “RC”. Initialize it to zero so that it will
enter the loop in step 3.

3. Do while &RC < 8
Start the main loop. This will keep invoking TBDISPL to display the table
until the user enters the END or RETURN command.

4. TBDISPL TAB1 PANEL(PAN1)
Display information from table TAB1 on panel PAN1. The current row, which
is the row the CRP is pointing to, will be the top row displayed. If the CRP is
at the top (CRP number zero), then the first row of the table will be the first
row displayed. The display, as it appears at the terminal, is shown in
Figure 15 on page 254. Format of the display is controlled by a panel
definition named PAN1, shown in Figure 16 on page 254. TBDISPL, besides
displaying the table, allows the user to scroll up and down the scrollable data
in the display.

EMPSER LNAME FNAME I PHA PHNUM
------ ------ ------ -- ---- ------

598304 Robertson Richard P 301 840-1224
172397 Smith Susan A 301 547-8465
813058 Russell Charles L 202 338-9557
395733 Adams John Q 202 477-1776
502774 Kelvey Ann A 914 555-4156

Figure 14. Five Rows in Table TAB1

TBDISPL

Chapter 2. Description of the ISPF services 253

Control will be returned to the dialog function when the user performs one of
these actions:
v Presses the Enter key. The user may or may not have typed data into the

fixed or scrollable portion of the screen.
An exception to this condition occurs if all of these were true:
– The user typed no data into the fixed portion of the screen.
– The user typed no data into the scrollable portion of the screen.
– The user pressed the Enter key.
– Panel PAN1 had neither a)REINIT nor a)PROC section. PAN1 does in

fact have a)PROC section.

In this case, control would not be returned to the dialog function.
v Enters the END or RETURN command. This may have been done by the

user pressing a function key or by typing the command into the command
field and pressing the Enter key. Panel PAN1, which is shown in Figure 16,

----------------------------- Employee List ------------------------ ROW 1 OF 5
Command ===> Scroll ===> PAGE

Notes ==>
Make changes to any information except Employee Serial:

------ Employee Name -------- --- Phone --- Employee
Last First MI Area Number Serial

Robertson Richard P 301 840-1224 598304
Smith Susan A 301 547-8465 172397
Russell Charles L 202 338-9557 813058
Adams John Q 202 477-1776 395733
Kelvey Ann A 914 555-4156 503774
****************************** BOTTOM OF DATA *********************************

Figure 15. Table TAB1 as Displayed Using Panel PAN1

)Attr
_Type(Input) Intens(Low)
Type(Input) Intens(Low) Caps(off)

)Body
%---------------------------- Employee List ---------------------------------
%Command ===>_CMDFLD %Scroll ===>_amt +;
%
+ Notes ==>#NOTES
+Make changes to any information except Employee Serial:
+
+------ Employee Name ------- --- Phone --- Employee
+Last First MI Area Number Serial
+
)Model
_LNAME _FNAME _I _PHA _PHNUM _EMPSER
)Init

&AMT = PAGE
)Proc

VPUT (Notes) Profile
)End

Figure 16. Table Display Panel Definition PAN1

TBDISPL

254 z/OS V2R2 ISPF Services Guide

has a command field named CMDFLD. The user may or may not have
typed other data into the fixed or scrollable portion of the screen.

v Enters the UP or DOWN scroll command when data has been typed into
the fixed or scrollable portion of the screen.

Control will not be returned to the dialog function when the user performs
one of these actions:
v Presses the Enter key when no data has been typed into the fixed or

scrollable portion of the screen and the panel definition contains neither a
)REINIT nor a)PROC section.

v Enters the UP or DOWN scroll command when no data has been typed into
the fixed or scrollable portion of the screen.

v Enters a system command other than UP, DOWN, END, or RETURN. For
example, HELP, SPLIT, or CURSOR.

v Enters an application command that selects another dialog.
When a model set in the scrollable part of the display has been changed, the
corresponding table row is said to be a selected row. TBDISPL retrieves the
selected row. To retrieve a row means to position the CRP to that row, read it,
and then store the row values into the function pool. Next, values from the
changed model set are stored in the function pool. If there are no selected
rows, then the CRP is set to zero.

5. Set &RC = return code
Save the return code from TBDISPL in variable RC. This variable controls the
loop starting in step 4. These return codes are possible:
0 There were zero or one selected rows
4 There were two or more selected rows
8 The user entered the END command. Any number of rows, including

zero, may have been selected.
It is possible that TBDISPL will issue severe error return codes of 12 or 20.
Because CONTROL ERRORS CANCEL, the default value, is in effect, ISPF
will cancel the dialog function.

6. Process fixed portion input
Process the data the user typed into the fixed portion of the display. On a
table display panel definition, the)BODY section defines the fixed portion of
the display and the)MODEL section defines the scrollable portion of the
display. Panel PAN1, shown in Figure 16 on page 254, has three input fields in
the)BODY section:
CMDFLD

The command field
AMT The scroll amount field
NOTES

A “notepad” field
Users can enter ISPF system commands such as END, RETURN, UP, DOWN,
HELP, and SPLIT in the CMDFLD field. Or, they can enter an application
command that SELECTs another dialog, if there is such a command defined in
the active command table. Users can also enter function commands. These are
commands that are handled by the dialog function. CANCEL is an example of
a function command. The function could check if CMDFLD had the value
CANCEL. If so, a TBEND could be issued. In this example, there would also
have to be logic to leave the TBDISPL loop after the TBEND is issued.
The second input field, AMT, is the scroll amount field. Changes to this field
are always handled by ISPF. The TBDISPL service does not consider changes
to this field as “input to the fixed portion of the screen”.

TBDISPL

Chapter 2. Description of the ISPF services 255

The third input field, NOTES, could be used as a small on-screen notepad.
The)PROC section of PAN1 uses the VPUT service to put this variable into
the profile pool. In this field, the user could write short notes that are to be
remembered from one session to the next.
This example shows the processing of the fixed portion input as step 6. It is
done before the processing of the scrollable portion input. This would be
natural for handling a CANCEL command. However, if for example, the
dialog function also handled a SAVE command, which would result in a
TBSAVE, the dialog writer may want that processing to occur after the
scrollable portion input processing.
The processing of the fixed portion input can be placed:
a. Before the processing of all selected rows (step 6)
b. After the processing of all selected rows (between steps 13 and 14)
c. Before the processing of each selected row (between steps 7 and 8)
d. After the processing of each selected row (between steps 8 and 9)

7. Set &PROCFLAG = ON
Create a variable that indicates there are selected rows. In this example, the
variable is called “PROCFLAG”. Initialize this flag to ON so it will enter the
loop in step 8.

8. Process scrollable portion input TBPUT TAB1
Process the scrollable portion input. Here, the current selected row is
processed. In this example, the TBPUT service is invoked to update the row.
The function pool values of variables corresponding to table columns are
written to the table row.
If the processing of the scrollable portion input includes invoking any service
that resulted in a display, such as BROWSE, EDIT, DISPLAY, or another
TBDISPL, then the CONTROL service must be invoked to save and then
restore the table display control information, such as pending selected rows.
Example:
TBDISPL TAB1 PANEL(PAN1)

Display table TAB1 with panel PAN1, assuming you select several
rows

CONTROL DISPLAY SAVE
Save “control” information

DISPLAY PANEL(PAN2)
Display panel PAN2

CONTROL DISPLAY RESTORE
Restore the “control” information

TBDISPL TAB1
Invoke TBDISPL to get the next selected row

CONTROL DISPLAY SAVE
Save “control” information

DISPLAY PANEL(PAN2)
Display panel PAN2

CONTROL DISPLAY RESTORE
Restore the “control” information

If non-ISPF displays are processed, instead of using CONTROL DISPLAY
SAVE and CONTROL DISPLAY RESTORE, use CONTROL DISPLAY
REFRESH either before or after the non-ISPF display is done.

9. If &ZTDSELS > 1 Then
Determine if there are any pending selected rows. If ZTDSELS is zero, there
were no selected rows and this step would not have been reached (see Step 7).
If ZTDSELS is one, then there was one selected row. This is the current row

TBDISPL

256 z/OS V2R2 ISPF Services Guide

and there are no pending selected rows. If ZTDSELS is more than one, then
there is the current selected row and at least one pending selected row.

10. TBDISPL TAB1
Reinvoke TBDISPL without the PANEL or MSG parameter to get the next
selected row. That is, the CRP will be positioned to the next selected row to
retrieve that row, and the function pool values of variables corresponding to
fields in the scrollable portion will be updated to reflect changes made to the
corresponding model set on the display.

11. Else
Since ZTDSELS is not greater than one (Step 9) but is greater than zero (Step
7), then ZTDSELS must equal one. This means that there are no pending
selected rows.

12. Set &PROCFLAG = OFF
Force control to leave the loop started in Step 7. All selected rows have been
processed.

13. End
End the selected row processing loop.

14. End
End the main loop, which displays table TAB1 with panel PAN1.

15. TBCLOSE TAB1
Close table TAB1. Write the updated version of TAB1 to disk, and delete the
virtual storage copy.

TBDISPL summary
1. Floating command line

If the command line for a table display panel has been moved to the bottom
position, and if no alternate placement has been specified for the long
message line, the line directly above the repositioned command line is
reserved (left blank) for the display of long messages. Otherwise, if a user
entered erroneous data on that line, a long message could overlay that data.
ISPF adjusts display scrolling to account for the line reserved for long
messages.

2. TBDISPL does not modify the table
TBDISPL itself does not modify the table. The dialog function can use the
information entered by the user to determine what processing is to be
performed and can modify the table accordingly.

3. Displaying an empty table
It is acceptable to invoke TBDISPL to display a table with no rows. The
scrollable portion will consist only of the bottom-of-data marker. In previous
versions, this resulted in a severe error, return code = 20, message = ISPT051.

4. CSRROW and auto-selection
Specifying the CSRROW parameter or control variable without setting the
AUTOSEL parameter or control variable to “NO” results in the row being
selected, even if the user did not explicitly select the row. This is called
auto-selection.

5. Dual defaults for CAPS and JUST
In the)BODY section of a table display panel, input and output fields default
to CAPS(ON) and JUST(LEFT). In the)MODEL section, they default to

TBDISPL

Chapter 2. Description of the ISPF services 257

CAPS(OFF) and JUST(ASIS). These dual defaults exist to allow both new
capability in this version and compatibility with previous versions of the
product.

6. Effect of having a)REINIT or)PROC section
TBDISPL behavior is affected by whether a)REINIT or)PROC section is
included in the panel definition. When a)REINIT or)PROC section is
included, and the user makes no modification to the screen and presses the
Enter key, TBDISPL returns control to the dialog function. On the other hand,
if neither a)REINIT nor a)PROC section is included, and the user makes no
modification to the screen and presses the Enter key, TBDISPL treats this as a
“no operation”, and control does not return to the dialog function. This is to
allow both new capability in this version and compatibility with previous
versions of the product.

7. Search arguments in conjunction with TBDISPL
Only search arguments specifying a forward scan through the table should be
used in conjunction with TBDISPL. Otherwise, TBDISPL does not support
scrolling through the display.

8. TBDISPL parameters and their categories:
Required Optional

Service Parameter Parameters Categories

TBDISPL table-name in name
[PANEL(panel-name)] in name
[MSG(message-id)] in name
[CURSOR(field-name)] in name
[CSRROW(table-row-number)] in number
[CSRPOS(cursor-position)] in number
[AUTOSEL(YES|NO)] in key
[POSITION(crp-name)] out number
[ROWID(rowid-name)] out number

in Indicates that the parameter is used to pass information from the
dialog to ISPF.

out Indicates that the parameter is used to enable ISPF to pass information
to the dialog. ISPF will create a variable with the indicated name.

key Indicates it is a keyword parameter.
name Indicates the value specified in the parameter is a name.
number

Indicates the value specified in the parameter is a number.
9. These items can appear in the)BODY section of a table display panel

definition:
v Text
v Variables within text, such as “&XYZ”
v Input fields
v Output fields
v Dynamic areas that are not scrollable or extendable
v A graphic area that is not extendable.

10. These items cannot appear in the)BODY section of a table display panel
definition:
v Dynamic areas that are scrollable or extendable
v More than one graphic area. This is true for any panel
v A graphic area that is extendable. Graphic areas are never scrollable.

11. These items can appear in the)MODEL section of a table display panel
definition:
v Text
v Variable model lines
v Input fields

TBDISPL

258 z/OS V2R2 ISPF Services Guide

v Output fields.
12. These items cannot appear in the)MODEL section of a table display panel

definition:
v Variables within text
v Dynamic areas
v Graphic areas.

13. During TBDISPL display, these user actions return control to the dialog
function:
v Pressing the Enter key. See item 6 in “TBDISPL summary” on page 257 for

an exception.
v Entering the END or RETURN command
v Entering the UP or DOWN scroll command when data has been typed into

the fixed or scrollable portion of the screen
v Entering the UP or DOWN scroll command when using dynamic table

expansion and more rows are needed to satisfy the scroll request.
14. During TBDISPL display, these user actions do not return control to the dialog

function:
v Pressing the Enter key when no data has been typed into the fixed or

scrollable portion of the screen and the panel definition has neither a
)REINIT nor a)PROC section

v Entering the UP or DOWN scroll command without typing data into the
fixed or scrollable portion of the screen. Also, control does not return to the
dialog function in either of these two cases:
– Dynamic table expansion is not defined
– Dynamic table expansion is defined and the table already contains

enough rows to satisfy the scroll.
v Entering a system command other than UP, DOWN, END, or RETURN. For

example: HELP, SPLIT, PRINT, or CURSOR.
v Entering an application command that selects another dialog.

15. These return codes are possible from TBDISPL:
0 There were zero or one selected rows. A scroll may be pending.
4 There were two or more selected rows.
8 The END or RETURN command was entered. Any number of rows,

including zero, may have been selected.
12 The specified panel or message could not be found or the specified

table was not open.
20 Severe error.

16. Levels of commands:

System commands
Provided by ISPF and always available to a user, unless explicitly
overridden by an application. For example: END, UP, HELP, PRINT.

Application commands
Available to a user throughout operation of an application. For
example: a command defined in the active command table that
SELECTs another dialog.

Function commands
Meaningful only while operating a particular function within an
application. For example, the dialog function can be designed so that
TBSORT is invoked when the user enters “SORT” in the command
field.

17. Commands can be entered by:
v Typing information into the command field and pressing the Enter key
v Pressing a function key

TBDISPL

Chapter 2. Description of the ISPF services 259

v Selecting an ATTENTION FIELD using the light pen or cursor select key.
18. TBDISPL does not rebuild the display until all selected rows have been

successfully processed. Therefore, the CRPs of the displayed table will not
match those of the actual table if the order or structure of the table is changed
within a TBDISPL series. This can affect correct cursor row placement for a
redisplay with message while in the series.
It is recommended that any verification of selected rows be done for all
selected rows before performing operations that change the order or structure
of the table. This requires that selected row IDs be saved until all selected
rows have been retrieved and validated. This affects only the cursor placement
as just described. The value passes back in the name specified with the
POSITION keyword contains the CRP of the row in the actual table.

TBEND—close a table without saving
The TBEND service deletes the virtual storage copy of the specified table, making
it unavailable for further processing. The permanent copy, if any, is not changed.

A TBEND request for a shared table causes the use count in the table for that
logical screen to be decremented by one. If the use count for all logical screens is
zero, the TBEND service is performed. Otherwise, no action occurs, and the table is
available for continued processing in any screen that still has a use count greater
than zero.

Command invocation format

�� ISPEXEC TBEND table-name ��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('TBEND���' , table-name); ��

Parameters
table-name

Specifies the name of the table to be ended.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

TBDISPL

260 z/OS V2R2 ISPF Services Guide

12 Table is not open.

20 Severe error.

Example
Delete the virtual storage copy table TELBOOK. Do not change any permanent
copy in the table library.
ISPEXEC TBEND TELBOOK

Set the program variable BUFFER to contain:
TBEND TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue this
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBEND ’,’TELBOOK ’);

TBERASE—erase a table
The TBERASE service deletes a table from the table output library. The table
output library must be allocated before invoking this service.

The table must not be open in WRITE mode when this service is invoked.

Command invocation format

�� ISPEXEC TBERASE table-name
LIBRARY(library)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('TBERASE�' , table-name , library);
'�'

��

Parameters
table-name

Specifies the name of the table to be erased.

library
Specifies the name of a DD statement or LIBDEF lib-type that defines the
library in which the table exists. If this parameter is omitted, the default is
ISPTABL.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

TBEND

Chapter 2. Description of the ISPF services 261

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

8 Table does not exist in the output library.

12 Table in use; ENQ failed.

16 Table output library not allocated.

20 Severe error.

Example
Erase the table TELBOOK from the table library.
ISPEXEC TBERASE TELBOOK

Set the program variable BUFFER to contain:
TBERASE TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Enter the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBERASE ’,’TELBOOK ’);

TBEXIST—determine whether a row exists in a table
The TBEXIST service tests for the existence of a specific row in a table with keys.

The current contents of the key variables, dialog variables that correspond to keys
in the table, are used to search the table for the row.

This service is not valid for non-keyed tables and causes the current row pointer
(CRP) to be set to the top.

Command invocation format

�� ISPEXEC TBEXIST table-name ��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

TBERASE

262 z/OS V2R2 ISPF Services Guide

�� CALL ISPLINK ('TBEXIST�' , table-name); ��

Parameters
table-name

Specifies the name of the table to be searched.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion; the CRP is positioned to the specified row.

8 Keyed tables: the specified row does not exist; the CRP is set to TOP (zero).

Non-keyed tables: service not possible; the CRP is set to TOP.

12 Table is not open.

20 Severe error.

Example
In the keyed table TELBOOK, test for the existence of a row having a specific key
value.
ISPEXEC TBEXIST TELBOOK

If return code = 0, the row exists.

Set the program variable BUFFER to contain:
TBEXIST TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following command:
CALL ISPEXEC (BUFLEN, BUFFER);

If return code = 0, the row exists.

or alternately
CALL ISPLINK (’TBEXIST ’,’TELBOOK ’);

If return code = 0, the row exists.

TBGET—retrieve a row from a table
The TBGET service accesses a row in a table. If the NOREAD parameter is not
specified, the row values are read into the function pool.

For tables with keys, the table is searched for the row to be fetched. The current
contents of the key variables, dialog variables that correspond to keys in the table,
are used as the search argument.

TBEXIST

Chapter 2. Description of the ISPF services 263

For tables without keys, the row pointed to by the current row pointer (CRP) is
fetched. You can use the TBSCAN, TBSKIP, TBBOTTOM, and TBTOP services to
position the CRP.

The CRP is always set to point to the row that was fetched.

All variables in the row, including key and name variables, if any, are stored into
the corresponding dialog variables. A list of extension variable names can also be
retrieved.

Command invocation format

�� ISPEXEC TBGET table-name
SAVENAME(var-name) ROWID(rowid-name)

�

�
NOREAD POSITION(crp-name)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('TBGET���' , table-name , var-name
'�'

�

� , rowid-name
'�'

, 'NOREAD��'
'�'

, crp-name);
'�'

��

Parameters
table-name

Specifies the name of the table to be read.

var-name
Specifies the name of a variable into which a list of extension variable names
contained in the row will be stored. The list is enclosed in parentheses, and the
names within the list are separated by a blank.

rowid-name
Specifies the name of a variable in which a number that uniquely identifies the
row being accessed is to be stored. Later, this identifier can be specified in the
ROW parameter of TBSKIP to cause the CRP to be positioned to the row. This
identifier is not saved on permanent storage by TBSAVE or TBCLOSE. The
variable must be an 8-byte character field.

NOREAD
Specifies that the variables contained in the requested row are not to be read
into the variable pool.

crp-name
Specifies the name of a variable in which the row number pointed to by the
CRP is to be stored. If the CRP is positioned to TOP, the row number returned
is zero.

TBGET

264 z/OS V2R2 ISPF Services Guide

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

8 Keyed tables: The row specified by the value in the key variables does not
exist in any row after the current row pointer, the CRP is set to TOP
(ZERO).

Non-keyed tables: the CRP was at TOP and remains at TOP.

12 Table is not open.

16 Variable value has been truncated, or insufficient space was provided to
return all extension variable names.

20 Severe error.

Example
In the keyed table TELBOOK, from a row having a specific key value, copy
variable values into the respective function pool variables having the same names.
ISPEXEC TBGET TELBOOK

Set the program variable BUFFER to contain:
TBGET TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBGET ’,’TELBOOK ’);

TBMOD—modify a row in a table
The TBMOD service unconditionally updates a row in a table.

For tables with keys, the table is searched for the row to be updated. The current
contents of the key variables, dialog variables that correspond to keys in the table,
are used as the search argument. If a match is found, the row is updated. If a
match is not found, a TBADD is performed, adding the row to the end of the table
(or it is added at an appropriate point for maintaining the table) in the sequence
specified in a previously processed TBSORT request.

For tables without keys, TBMOD is equivalent to TBADD. This processing takes
place: any new row is added either immediately following the current row, pointed
to by the current row pointer (CRP), or it is added at a point appropriate for
maintaining the table in the sequence specified in a previously processed TBSORT
request.

TBGET

Chapter 2. Description of the ISPF services 265

The CRP is always set to point to the row that was updated or added.

The current contents of all dialog variables that correspond to columns in the table,
keys and names, are saved in the row.

Additional variables, not specified when the table was created, can also be saved
in the row. These “extension” variables apply only to this row, not to the entire
table. Whenever the row is updated, the extension variables must be specified
again if they are to be rewritten.

When the TBMOD service uses the TBADD service to add rows to a table, the
default value for number-of-rows parameter of the MULT keyword for TBADD can
affect TBMOD execution. See the description of the TBADD service for
information.

Command invocation format

�� ISPEXEC TBMOD table-name
SAVE(name-list) ORDER

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('TBMOD���' , table-name , name-list
'�'

'ORDER���'
'�'

�

�); ��

Parameters
table-name

Specifies the name of the table to be updated.

name-list
Specifies a list of extension variables, by name, that are to be saved in the row,
in addition to the variables specified when the table was created.

ORDER
Specifies that any new row is to be added or inserted in the order specified in
the sort information record. A TBSORT must have been performed for this
table before use of this keyword. For tables with keys, the row is updated and
then reordered if necessary. If a match is not found or the table does not have
keys, the row is added at a point appropriate for maintaining the table in the
sequence specified by the sort information record. This keyword is ignored if
the table has never been sorted. If this keyword is omitted, any existing sort
information record is nullified.

When a newly inserted row has sort field-names equal to the sort field-names
of an existing row, the insertion is made after the existing row.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

TBMOD

266 z/OS V2R2 ISPF Services Guide

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion. Keyed tables: Existing row updated. Non-keyed tables:
New row added to table.

8 Keys did not match; new row added to the table. Returned only for tables
with keys.

12 Table is not open.

16 Numeric conversion error; see numeric restrictions for TBSORT. Returned
only for sorted tables.

20 Severe error.

Example
Update or add a row of variables in the table TELBOOK using values from
variables in the function variable pool.
ISPEXEC TBMOD TELBOOK

Set the program variable BUFFER to contain:
TBMOD TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBMOD ’,’TELBOOK ’);

TBOPEN—open a table
The TBOPEN service reads a permanent table from the table input file into virtual
storage, and opens it for processing. TBOPEN should not be issued for temporary
tables.

An ENQ is issued to ensure that no other user is currently accessing the table. The
ENQ applies only to the specified table in the table (member) in the table input
library, not the entire library. For the WRITE option, an exclusive ENQ remains in
effect until the table is closed. For the NOWRITE option, a shared ENQ remains in
effect only during the time that the table is read into storage.

Command invocation format

�� ISPEXEC TBOPEN table-name
WRITE

NOWRITE LIBRARY(library) SHARE
��

TBMOD

Chapter 2. Description of the ISPF services 267

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('TBOPEN��' , table-name
'WRITE���'

, '�'
'NOWRITE�'

, library
'�'

�

� , 'SHARE���');
'�'

��

Parameters
table-name

Specifies the name of the table to be opened.

WRITE
Specifies that the table is being accessed for update. The updated table can
subsequently be saved on disk by use of the TBSAVE or TBCLOSE service.
This option is the default.

The WRITE/NOWRITE usage of a shared table must be consistent on all
TBOPEN and TBCREATE requests. That is, all requests for a given shared table
that result in concurrent use of that table must specify the same WRITE or
NOWRITE attribute.

NOWRITE
Specifies read-only access. Upon completion of processing, the virtual storage
copy should be deleted by invoking the TBEND or TBCLOSE service.

library
Specifies the name of a DD statement or LIBDEF lib-type that defines the input
library. If specified, a generic (non-ISPF) ddname must be used. If this
parameter is omitted, the default is ISPTLIB.

SHARE
Specifies that the table in virtual storage can be shared between logical screens
while the user is in split-screen mode. The TBOPEN request from the first
logical screen reads the table into virtual storage and opens it. Subsequent
TBOPEN requests from other logical screens use the same table (and same
CRP) that is in virtual storage.

A successful TBOPEN or TBCREATE request causes the use count in the table
to be incremented by one. The use count determines the action taken by
subsequent TBEND and TBCLOSE requests.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

TBOPEN

268 z/OS V2R2 ISPF Services Guide

Return codes
These return codes are possible:

0 Normal completion.

8 Table does not exist.

12 ENQ failed; table was in use by another user or the current user.

16 Table input library was not allocated.

20 Severe error.

Example
Access (open) the table TELBOOK for updating.
ISPEXEC TBOPEN TELBOOK WRITE

Set the program variable BUFFER to contain:
TBOPEN TELBOOK WRITE

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBOPEN ’,’TELBOOK ’,’WRITE ’);

TBPUT—update a row in a table
The TBPUT service updates the current row of a table.

For tables with keys, the current contents of the key variables, dialog variables that
correspond to keys in the table, must match the key of the current row, pointed to
by the current row pointer (CRP). Otherwise, the update is not performed.

For tables without keys, the row pointed to by the CRP is always updated.

If the update was successful, the CRP remains unchanged. It continues to point to
the row that was updated. The current contents of all dialog variables that
correspond to columns in the table are saved in the row.

Additional variables not specified when the table was created, can also be saved in
the row. These “extension” variables apply only to the row, not to the entire table.
Whenever the row is updated, the extension variables must be specified again if
they are to be rewritten.

Command invocation format

�� ISPEXEC TBPUT table-name
SAVE(name-list) ORDER

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

TBOPEN

Chapter 2. Description of the ISPF services 269

or

�� CALL ISPLINK ('TBPUT���' , table-name , name-list
'�'

�

� , 'ORDER���');
'�'

��

Parameters
table-name

Specifies the name of the table to be updated.

name-list
Specifies a list of extension variables, by name, that are to be saved in the row,
in addition to the variables specified when the table was created.

ORDER
Specifies that, if necessary, the updated row is to be moved in the table to a
point that preserves the order specified in the sort information record. A
TBSORT must have been performed for this table before use of this keyword.
This keyword is ignored if the table has never been sorted. If this keyword is
omitted, any existing sort information record is nullified.

When a newly repositioned row has sort field-names equal to the sort
field-names of an existing row, the row is inserted after the existing row.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

8 Keyed tables: The key does not match that of the current row; CRP set to
TOP (zero).

Non-keyed tables: CRP was at TOP and remains at TOP.

12 Table is not open.

16 For sorted tables: numeric conversion error; see numeric restrictions for
TBSORT.

20 Severe error.

Example
Update a row, in the table TELBOOK, using values from variables in the function
variable pool.
ISPEXEC TBPUT TELBOOK

Set the program variable BUFFER to contain:
TBPUT TELBOOK

TBPUT

270 z/OS V2R2 ISPF Services Guide

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBPUT ’,’TELBOOK ’);

TBQUERY—obtain table information
The TBQUERY service returns information about a specified table, which must
have been opened (TBOPEN) by the current user before invoking this service. This
information can be obtained:
v The number of key fields and their names
v The number of all other columns and their names
v The number of rows and the current row position
v The sort arguments in the last invocation of TBSORT
v Details of the last invocation of TBSARG

All the parameters except for table-name are optional. If all of the optional
parameters are omitted, TBQUERY simply validates the existence of an open table.

Command invocation format

�� ISPEXEC TBQUERY table-name
KEYS(key-name) NAMES(var-name)

�

�
ROWNUM(rownum-name) KEYNUM(keynum-name) NAMENUM(namenum-name)

�

�
POSITION(crp-name) SORTFLDS(srt-name) SARGLIST(lst-name)

�

�
SARGCOND(cond-name) SARGDIR(dir-name)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('TBQUERY�' , table-name , key-name
'�'

, var-name
'�'

�

� , rownum-name
'�'

, keynum-name
'�'

, namenum-name
'�'

, crp-name
'�'

�

� , srt-name
'�'

, lst-name
'�'

, cond-name
'�'

, dir-name
'�'

); ��

TBPUT

Chapter 2. Description of the ISPF services 271

Parameters
table-name

Specifies the name of the table for which information is desired.

key-name
Specifies the name of a variable into which a list of key variable names
contained in the table will be stored. A list that is not null will be enclosed in
parentheses, and the names within the list will be separated by a blank. If no
key variables are defined for the table, the key-name variable is set to null.

var-name
Specifies the name of a variable into which a list of variable names in the table,
specified with the NAMES keyword when the table was created, will be
stored. The list will be enclosed in parentheses, and the names within a list
that is not null will be separated by a blank. If no name variables are defined
for the table, the var-name variable is set to null.

rownum-name
Specifies the name of a variable in which the number of rows contained in the
table will be stored.

keynum-name
Specifies the name of a variable in which the number of key variables
contained in the table will be stored.

namenum-name
Specifies the name of a variable in which the number of variables in the table
specified with the NAMES keyword when the table was created will be stored.

crp-name
Specifies the name of a variable in which the row number pointed to by the
CRP is to be stored. If the CRP is positioned to TOP, the row number returned
is zero.

srt-name
Returns the sort arguments as they were presented to TBSORT. If no sort is
active for the table then the srt-name variable is set to null.

lst-name
Returns the name-list that was last presented to the TBSARG service ARGLIST
parameter. If ARGLIST is not currently active then lst-name variable is set to
null.

cond-name
Returns the list of name-cond pairs that was last presented to the TBSARG
service NAMECOND parameter.

dir-name
Returns the current direction of the search (NEXT or PREVIOUS) established
for TBSCAN.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

TBQUERY

272 z/OS V2R2 ISPF Services Guide

0 Normal completion.

12 Table is not open.

16 Not all keys or names were returned because insufficient space was
provided.

20 Severe error.

Example
For the keyed table TELBOOK:
v In dialog variable QKEYS, store the names of key variables.
v In dialog variable QNAMES, store the names of non-key variables.
v In dialog variable QROWS, store the number of rows.
ISPEXEC TBQUERY TELBOOK KEYS(QKEYS) NAMES(QNAMES) ROWNUM(QROWS)

Set the program variable BUFFER to contain:
TBQUERY TELBOOK KEYS(QKEYS) NAMES(QNAMES) ROWNUM(QROWS)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBQUERY ’,’TELBOOK ’,

’QKEYS ’,’QNAMES ’,’QROWS ’);

TBSARG—define a search argument
The TBSARG service establishes a search argument for scanning a table by using
the TBSCAN or TBDISPL services. When TBSARG is used in conjunction with
TBDISPL, the panel definition referred to by the TBDISPL request must contain a
specification of ROWS(SCAN) on the)MODEL statement in the panel definition.

The direction of the scan, forward or backward, can be specified. The conditions
that terminate the subsequent scan can also be specified.

The search argument is specified in dialog variables that correspond to columns in
the table, including key variables. A value of null for one of the dialog variables
means that the corresponding table variable is not to be examined during the
search. However, the variable will be examined if the NOBSCAN parameter was
specified when the variable was defined using the VDEFINE service.

Generally, TBSARG is used before TBSCAN or TBDISPL operations to establish
search arguments for these operations. To set up a search argument, set table
variables in the function pool to nulls by using TBVCLEAR. Next, set a value in
each variable in the function pool that is to be part of the search argument. Then,
issue TBSARG to establish this variables as the search argument to be used in
subsequently requested TBSCAN or TBDISPL operations.

Use the NAMECOND list to establish search argument conditions. For any table
variable that was given a value in the function pool, but is not specified in the
NAMECOND list, the default is EQ.

TBQUERY

Chapter 2. Description of the ISPF services 273

Only extension variables can be included in the search argument. They are
included by specifying their names in the name-list parameter. The values of these
variables become part of the search argument. A null value in an extension variable
is a valid search argument.

A search argument of the form AAA* means that only the characters up to the
asterisk (*) are compared. This is called a generic search argument. A generic
search argument is specified by placing an asterisk in the last nonblank position of
the argument. Asterisks embedded in the argument are treated as data. For
example, to perform a generic search for a row value of DATA*12, the generic
search argument is:
DATA*12*

The first asterisk is part of the search argument. The second asterisk designates the
argument to be a generic search argument.

In a CLIST, this technique can be used to set a variable to a literal value that ends
with an asterisk:
SET &X = AAA&STR(*)

You can use either a DBCS or a MIX (DBCS and EBCDIC) format string as a search
argument. If either is used as a generic search argument, it must be specified as
follows:
v DBCS format string

DBDBDBDB**

where DBDBDBDB represents a 4-character DBCS string and ** is a single DBCS
character representing the asterisk (*).

v MIX (DBCS and EBCDIC) format string
eeee[DBDBDBDBDB]*

where eeee represents a 4-character EBCDIC string, DBDBDBDBDB represents a
5-character DBCS string, [and] represent shift-out and shift-in characters, and *
is an asterisk in single-byte format.

The position of the current row pointer (CRP) is not affected by the TBSARG
service.

TBSARG replaces all previously set search arguments for the specified table.

Comparisons between the row values and the argument list are always done on a
character basis. That is, the values are considered character data, even if they
represent numbers.

Command invocation format

�� ISPEXEC TBSARG table-name
ARGLIST(name-list)

NEXT

PREVIOUS
�

�
NAMECOND(name-cond-pairs)

��

TBSARG

274 z/OS V2R2 ISPF Services Guide

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('TBSARG��' , table-name , name-list
'�'

�

�
'NEXT����'

, '�'
'PREVIOUS'

, name-cond-pairs);
'�'

��

Parameters
table-name

Specifies the name of the table for which an argument is to be established.

name-list
Specifies a list of extension variables, by name, whose values are to be used as
part of the search argument. See “Invoking the ISPF services” on page 2 for
specification of name lists.

NEXT
Specifies that the scan is to proceed from the row following the current row to
the bottom of the table. This is the default.

PREVIOUS
Specifies that the scan is to proceed from the row preceding the current row to
the top of the table. To scan the bottom row, CRP must be positioned to TOP.

name-cond-pairs
Specifies a list of names and conditions for determining the search argument
conditions for scanning a table. There must be one condition specified for
every name specified in the list. This list is used to associate a particular
operator (condition) with a previously established scan argument. This
parameter does not affect how the search arguments are established.

The name-cond-pairs syntax is as follows:
(name1,condition1,name2,condition2 ...)

Each “name” must be the name of a key field, name field, or name of an
extension variable for the table. If the specified name does not exist, a severe
error is encountered.

The “condition” specifies the scan condition for the “name” (column) to which
it is paired. The search arguments are specified in dialog variables that
correspond to columns in the table, and this determines the columns that take
place in the search.

The valid condition-values are EQ, NE, LE, LT, GE, and GT. If some or all
condition-value-pairs are not specified, the default is EQ for those columns
participating in the search. Each argument and its associated operator are
treated as separate entities, not as subfields of a single argument. The
condition-values LE, LT, GE, and GT might be immediately followed by a date
indicator. The date indicator is Yn, where Y indicates that the variable name
associated with the condition-value is a date, and n is an integer from 1 to 7

TBSARG

Chapter 2. Description of the ISPF services 275

indicating the offset within the variable value where the year begins. The year
should be a 2-digit year, because a century value is inserted in front of the
2-digit year for compare purposes. These meanings are associated with the
condition-values:

EQ Specifies that the search is for an equal condition between the
argument value and the row value. This is the default.

NE Specifies that the search is for a row value not equal to the argument
value.

LE Specifies that the search is for a row value less than or equal to the
argument value.

LT Specifies that the search is for a row value less than the argument
value.

GE Specifies that the search is for a row value greater than or equal to the
argument value.

GT Specifies that the search is for a row value greater than the argument
value.

Yn Can be used with LE, LT, GE, and GT. It must immediately follow one
of the four allowed condition-values. The Y indicates that the paired
variable name is a date variable that needs a century value added to a
2-digit year so that dates can be compared correctly. The n is a number
from 1 to 7 that gives the offset within the variable value where the
year is located.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

8 All column variables are null, and the name-list parameter was not
specified; no argument is established.

12 Table is not open.

20 Severe error.

Examples
Establish a search argument to be used by a TBSCAN operation of the table
TELBOOK. Assume that LNAME and ZIPCODE are columns in table TELBOOK.
Specify a scan direction of forward and terminate the scan when the row value for
the LNAME column is equal to “JOHNSON” and the ZIPCODE column is greater
than 08007.
v Invoke TBVCLEAR for table TELBOOK
v Set variable LNAME to JOHNSON
v Set variable ZIPCODE to 08007
v Issue this request:

TBSARG

276 z/OS V2R2 ISPF Services Guide

ISPEXEC TBSARG TELBOOK NEXT NAMECOND(LNAME,EQ,ZIPCODE,GT)

Set the program variable BUFFER to contain:
TBSARG TELBOOK NEXT NAMECOND(LNAME,EQ,ZIPCODE,GT)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBSARG ’,’TELBOOK ’,’ ’,’NEXT ’,

’(LNAME,EQ,ZIPCODE,GT)’);

Establish a search argument to be used by a TBSCAN operation of the table
DATETBL. Assume DATE1 to be a name variable in table DATETBL and that the
dates are in a yy/mm/dd format. Specify a scan direction of forward and
terminate the scan when the row value of DATE1 is greater than 99/01/31.
v Invoke TBVCLEAR for table DATETBL
v Set variable DATE1 to 99/01/31
v Issue this TBSARG request:

ISPEXEC TBSARG DATETBL NEXT NAMECOND(DATE1,GTY1)

TBSAVE—save a table
The TBSAVE service writes the specified table from virtual storage to the table
output library. The table output library must be allocated to a ddname of ISPTABL,
or specified by using the LIBDEF service before invoking this service. The table
must be open in WRITE mode.

When storing a table in an output file, the user can give it a new name. The table
name used in the output library must not be an alias name.

TBSAVE does not delete the virtual storage copy of the table; the table is still open
and available for further processing.

Table output can be directed to a table output library other than the library
specified on the table output ISPTABL DD statement or LIBDEF service request.
The library to be used must be allocated before table services receives control.
Thus, an application can update a specific table library. This is particularly useful
for applications that need to maintain a common set of tables containing their data.

Command invocation format

�� ISPEXEC TBSAVE table-name
REPLCOPY

NEWCOPY NAME(alt-name)
�

�
PAD(percentage) LIBRARY(library)

��

TBSARG

Chapter 2. Description of the ISPF services 277

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('TBSAVE��' , table-name,
'REPLCOPY'

, '�'
'NEWCOPY�'

�

� , alt-name
'�'

, percentage
'�'

, library);
'�'

��

Parameters
table-name

Specifies the name of the table to be saved.

NEWCOPY
Specifies that the table is to be written at the end of the output library,
regardless of whether an update in place would have been successful. This
ensures that the original copy of the table is not destroyed before a
replacement copy has been written successfully.

REPLCOPY
Specifies that the table is to be rewritten in place in the output library. If the
existing member is too small to complete the update in place successfully, or if
a member of the same name does not exist in the library, the complete table
will be written at the end of the output library.

A comparison is made between the virtual storage size of the table and the
external size in the table output library. If there is insufficient storage to write
the table in-place, it is written at the end of the table output library.

alt-name
Specifies an alternate name for the table. The table will be stored in the output
library with the alternate name. If another table already exists in the output
library with that name, it will be replaced. If the table being saved exists in the
output library with the original name, that copy will remain unchanged.

percentage
Specifies the percentage of padding space, based on the total size of the table.
The padding is added to the total size of the table only when the table is
written as a new copy. This parameter does not increase the table size when an
update in place is performed.

Padding permits future updating in place, even when the table has expanded
in size. Should the table expand beyond the padding space, the table is written
at the end of the table output library instead of being updated in place.

This parameter must have an unsigned integer value. For a call, it must be a
fullword fixed binary integer.

The default value for this parameter is zero.

library
Specifies the name of a DD statement or LIBDEF lib-type that defines the

TBSAVE

278 z/OS V2R2 ISPF Services Guide

output library in which table-name is to be saved. If specified, a generic
(non-ISPF) ddname must be used. If this parameter is omitted, the default is
ISPTABL.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

12 Table is not open.

16 Alternate table output library was not allocated.

20 Severe error.

Example
Write a table, TELBOOK, previously opened and currently in virtual storage, to the
table library. Retain the copy in virtual storage for further processing. Do not close
the table.
ISPEXEC TBSAVE TELBOOK

Set the program variable BUFFER to contain:
TBSAVE TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBSAVE ’,’TELBOOK ’);

TBSCAN—search a table
The TBSCAN service searches a table for a row with values that match an
argument list. The argument list can be established by use of the TBSARG service,
or specified in the name-list for TBSCAN.

The search can be either in a forward or a backward direction. A forward search
starts with the row after the current row and continues to the end of the table. A
backward search starts with the row before the CRP and continues to the top of
the table. If a match is found, the CRP is set to that row. The row is retrieved
unless the NOREAD parameter is specified. All variables in the row, including
keys and extension variable, if any, are stored in the corresponding variables in the
function pool. A list of extension variable names can also be retrieved.

Use of the name-list parameter is optional. If specified, it overrides the search
argument set by the TBSARG service for this search only. The values of all
variables specified in the name-list parameter become part of the search argument.
Key, name, and extension variables can be specified.

TBSAVE

Chapter 2. Description of the ISPF services 279

A value of the form AAA* means that only the characters up to the "*" are
compared. This is called a generic search argument. A generic search argument is
specified by placing an asterisk in the last nonblank position of the argument.
Asterisks embedded in the argument are treated as data. For example, to perform a
generic search for a row value of DATA*12, the generic search argument is:
DATA*12*

The first asterisk is part of the search argument. The second asterisk designates the
argument as a generic search argument. In a CLIST, this technique can be used to
set a variable to a literal value that ends with an asterisk:
SET &X = AAA&STR(*)

A null value in a variable is a valid search argument.

You can use either a DBCS or a MIX (DBCS and EBCDIC combined) format string
as a search argument. If either is used as a generic search argument, it must be
specified as follows:
v DBCS format string

DBDBDBDB**

where DBDBDBDB represents a DBCS string and ** is a single DBCS character
representing the asterisk (*).

v MIX (DBCS and EBCDIC combined) format string
eeee[DBDBDBDBDB]*

where eeee represents an EBCDIC string, DBDBDBDB represents a DBCS string,
[and] represent shift-out and shift-in characters, and * is an asterisk in
single-byte format.

Comparisons between the row values and the argument list are always done on a
character basis. That is, the values are considered character data, even if they
represent numbers.

Command invocation format

�� ISPEXEC TBSCAN table-name
ARGLIST(name-list)

�

�
SAVENAME(var-name) ROWID(rowid-name)

NEXT

PREVIOUS NOREAD
�

�
POSITION(crp-name) CONDLIST(condition-value-list)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

TBSCAN

280 z/OS V2R2 ISPF Services Guide

�� CALL ISPLINK ('TBSCAN��' , table-name , name-list
'�'

, var-name
'�'

�

� , rowid-name
'�'

'NEXT����'
, '�'

'PREVIOUS'
, 'NOREAD��'

'�'
, crp-name

'�'
�

� , condition-value-list);
'�'

��

Parameters
table-name

Specifies the name of the table to be searched.

name-list
Specifies a list of key, name, or extension variables, by name, whose values are
to be used as the search argument. Use of the name-list parameter is optional.
If specified, it overrides the search argument set by the TBSARG service for
this search only. If the name-list parameter is omitted, a search argument must
have been established by a previous TBSARG command. Otherwise, a severe
error occurs. See “Invoking the ISPF services” on page 2 for specification of
name lists.

var-name
Specifies the name of a variable into which a list of extension variable names
contained in the row will be stored. The list will be enclosed in parentheses,
and the names within the list will be separated by a blank.

rowid-name
Specifies the name of a variable in which a number that uniquely identifies the
row being accessed is to be stored. Later, this identifier can be specified in the
ROW parameter of TBSKIP to cause the CRP to be positioned to the row. This
identifier is not saved on permanent storage by TBSAVE or TBCLOSE. The
variable must be an 8-byte character field.

NEXT
Specifies that the scan is to proceed from the row following the current row to
the bottom of the table. This is the default.

PREVIOUS
Specifies that the scan is to proceed from the row preceding the current row to
the top of the table. To scan the bottom row, CRP must be positioned to TOP.

NOREAD
Specifies that the variables contained in the requested row not be read into the
variable pool.

crp-name
Specifies the name of a variable in which the row number pointed to by the
CRP is to be stored. If the CRP is positioned to TOP, the row number returned
to zero.

condition-value-list
Specifies a list of values for determining when the scan should end. Each
condition-value relates to a search argument for a column or extension variable
in the table as specified in the ARGLIST parameter. This parameter is ignored
if no ARGLIST parameter is specified. The operators specified in the

TBSCAN

Chapter 2. Description of the ISPF services 281

condition-list correspond one-to-one with the names in the ARGLIST. If there
are extra operators, a severe error condition is encountered.

The name-list and condition-value-list syntax is:
ARGLIST(name1,name2,)

CONDLIST(condition1, condition2, ...)

The valid condition-values are EQ, NE, LE, LT, GE, and GT. If there are fewer
condition-values than search arguments the default is EQ for those columns.
Each argument and its associated operator are treated as separate entities, and
not as subfields of a single argument.

The condition-values LE, LT, GE, and GT can have a date indicator
immediately following them. The date indicator is Yn, where Y indicates that
the variable name associated with the condition-value is a date, and n is an
integer between 1 and 7 indicating the offset within the variable value where
the year begins. The year should be a 2-digit value because a century value is
inserted in front of the 2-digit year for comparison purposes.

These meanings are associated with the condition-values:

EQ Specifies that the scan is to end when an equal condition exists
between the argument value and the row value. This is the default.

NE Specifies that the scan is to end when the row value is not equal to the
argument value.

LE Specifies that the scan is to end when the row value is less than or
equal to the argument value.

LT Specifies that the scan is to end when the row value is less than the
argument value.

GE Specifies that the scan is to end when the row value is greater than or
equal to the argument value.

GT Specifies that the scan is to end when the row value is greater than the
argument value.

Yn Can be used with LE, LT, GE, and GT. It must immediately follow one
of the four allowed condition-values. The Y indicates that the paired
variable name is a date variable that needs a century value added to a
2-digit year so that dates can be compared correctly. The n is a number
from 1 to 7 that gives the offset within the variable value where the
year is located.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

8 Row does not exist, no match was found; CRP is set to TOP (zero). The
rowid remains unchanged.

12 Table is not open.

TBSCAN

282 z/OS V2R2 ISPF Services Guide

16 Variable value has been truncated, or insufficient space is provided to
return all extension variable names.

20 Severe error.

Examples
See:
v “Example 1”
v “Example 2”
v “Example 3” on page 284

Example 1
For the table TELBOOK:

Move table TELBOOK's CRP to the row that fulfills the search argument as
specified in a preceding TBSARG operation. For an example of TBSARG, see the
example in the TBSARG description. Copy values from variables in that row to
function pool variables whose names match those of the table variables.
ISPEXEC TBSCAN TELBOOK

Set the program variable BUFFER to contain:
TBSCAN TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBSCAN ’,’TELBOOK ’);

Example 2
For the table TELBOOK:

Use the TBSCAN service to position the CRP of table TELBOOK to the row
containing the name JOHNSON in variable LNAME, and the zip code 08007 in
variable ZIPCODE. Copy values of the variables in that row to function pool
variables whose names match those of the table variables.
v Set function pool variable LNAME to JOHNSON.
v Set function pool variable ZIPCODE to 08007.
v Issue this request:
ISPEXEC TBSCAN TELBOOK ARGLIST(LNAME,ZIPCODE)

Set the program variable BUFFER to contain:
TBSCAN TELBOOK ARGLIST(LNAME,ZIPCODE)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBSCAN ’,’TELBOOK ’,’(LNAME,ZIPCODE)’);

If the return code is 0, the row was found and values were copied from the row
variables to function pool variables.

TBSCAN

Chapter 2. Description of the ISPF services 283

Example 3
Establish a search argument to be used by a TBSCAN operation of the table
DATETBL. Assume DATE1 to be a name variable in table DATETBL and that the
dates are in a yy/mm/dd format. Specify a scan direction of forward and
terminate the scan when the row value of DATE1 is greater than 99/01/31.
v Invoke TBVCLEAR for table DATETBL
v Set variable DATE1 to 99/01/31
v Issue these requests:

ISPEXEC TBSARG DATETBL NEXT NAMECOND(DATE1,GTY1)
ISPEXEC TBSCAN DATETBL

TBSKIP—move the row pointer
The TBSKIP service moves the current row pointer (CRP) of a table forward or
backward by a specified number of rows and retrieves the row to which it is
pointing unless the NOREAD parameter is specified.

All variables in the row, including keys and extension variables, if any, are stored
into the corresponding dialog variables. A list of extension variable names can also
be retrieved.

Command invocation format

�� ISPEXEC TBSKIP table-name
NUMBER(number) SAVENAME(var-name)

�

�
ROWID(rowid-name) ROW(rowid) NOREAD POSITION(crp-name)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('TBSKIP��' , table-name , number
'�'

, var-name
'�'

�

� , rowid-name
'�'

, rowid
'�'

, 'NOREAD��'
'�'

, crp-name);
'�'

��

Parameters
table-name

Specifies the name of the table to be used.

number
Specifies the direction and number of rows to move the CRP. This parameter
must be a positive or negative integer. A positive integer moves the CRP
toward the bottom of the table. A negative integer moves it toward the top.
Zero is an allowable value that results in retrieving the current row.

For a call, this parameter must be a fullword fixed binary number.

TBSCAN

284 z/OS V2R2 ISPF Services Guide

A default skip of +1 exists if the ROW and NUMBER parameters are both
omitted. When the ROW parameter is specified, no default skip of +1 is
assumed if the NUMBER parameter is omitted.

var-name
Specifies the name of a variable into which a list of extension variable names
contained in the row is stored. The list is enclosed in parentheses, and the
names within the list are separated by a blank.

rowid-name
Specifies the name of a variable in which a number that uniquely identifies the
row being accessed is to be stored. Later, this identifier can be specified in the
ROW parameter to cause the CRP to be positioned to the row. This identifier is
not saved on permanent storage by TBSAVE or TBCLOSE. The variable must
be an 8-byte character field.

rowid
Specifies the numeric value that uniquely identifies the row to be accessed.
This value is obtained by using the ROWID(rowid-name) parameter.

A default skip of +1 exists if the ROW and NUMBER parameters are both
omitted. When the ROW parameter is specified, no default skip of +1 is
assumed if the NUMBER parameter is omitted.

NOREAD
Specifies that the variables contained in the requested row not be read into the
variable pool.

crp-name
Specifies the name of a variable in which the row number pointed to by the
CRP is to be stored. If the CRP is positioned to TOP, the row number returned
is zero.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

8 CRP would have gone beyond the number of rows in the table. This
includes a table empty condition, with CRP set to TOP (zero). The rowid
remains unchanged.

12 Table is not open.

16 Variable value has been truncated, or insufficient space is provided to
return all extension variable names.

20 Severe error.

TBSKIP

Chapter 2. Description of the ISPF services 285

Example
In the table TELBOOK, move the current row pointer (CRP) to the next row. After
the move, copy values from variables in that row to variables in the function
variable pool having names that are the same as the names of the variables in the
row.
ISPEXEC TBSKIP TELBOOK

Set the program variable BUFFER to contain:
TBSKIP TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBSKIP ’,’TELBOOK ’);

TBSORT—sort a table
The TBSORT service places the rows of an open table in a user-specified order and
stores this specified order in a sort information record.

The sort can be done on more than one field and in either an ascending or
descending order. TBSORT can be issued for an empty table. When a TBSORT is
completed, the CRP is set to zero (top).

The sort can also be done by date without having to change the date variable to a
4-digit year. The ISPF configuration table field YEAR_2000_SLIDING_RULE is used
to determine a century value to be appended to the existing 2-digit year values
within the ISPF table. The variable is only modified internally for comparison
purposes and no actual change is made to data stored in the ISPF table.

The sort information record is maintained with the table. This record contains the
order of the “last-sort” and provides for rows to be added to the table in the
proper sequence after a sort has been completed. This is done through the ORDER
keyword on the TBADD, TBMOD, and TBPUT services. The sort information
record is saved on external storage when a TBSAVE or TBCLOSE operation
successfully completes. It is retrieved during TBOPEN processing.

Notes on Performance:

1. The performance of TBSORT is not greatly affected by the starting order of the
table. However, a sort by year can affect performance because an internal
conversion to a 4-digit year must be done for each comparison.

2. A numeric sort affects performance because a conversion of two numbers must
be done for each comparison.

Command invocation format

�� ISPEXEC TBSORT table-name FIELDS(sort-list) ��

TBSKIP

286 z/OS V2R2 ISPF Services Guide

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('TBSORT��' , table-name, sort-list); ��

Parameters
table-name

Specifies the name of the table to be sorted.

sort-list
Specifies sort fields. The syntax is as follows:
(field-name1, B|C|N|Yn, A|D,field-name2, B|C|N|Yn, A|D, ...)

Each sort field-name must be either a KEY or NAME field. The first (left most)
field-name is the primary key (most significant) and the rows are then collated
based on the values of the field-names.

The field-name is followed by a sort field type designator. The sort field type
designator can have a value of 'C' for a character sort, a value of 'N' for a
numeric sort, a value of 'B' for a binary sort, or a value of 'Yn' for a year sort.
For English, where sorting is in EBCDIC sequence, specifying either C or B as
the sort field type designator causes the same sort order. For other languages,
where the character format can be other than EBCDIC, only B is to be specified
for a binary sort.

The 'Yn' sort is treated as a character sort where the variable being sorted is a
date variable, with n being the offset of the beginning of a 2-byte year in the
variable. To sort a table into a valid ascending or descending date sequence,
the date field must have a format with the most significant part (the year) at
the start, the least significant part at the end, and a sort field type designator
of Y1. Some examples of valid formats are:
YY/MM/DD
YYDDD
YY-MM

Internally, TBSORT expands the year to a 4-byte year using the ISPF
configuration table field YEAR_2000_SLIDING_RULE to calculate the century
value.

The collating sequence for character sorts during DBCS and English sessions is
in EBCDIC order. This means, for example, that all lowercase letters precede
uppercase letters when sorting in an ascending sequence. For other languages,
a character sort is done such that both uppercase and lowercase, as well as
accented and non-accented versions of a letter, are sorted in the proper order.

The sort field type designator is followed by a sort sequence direction value.
The sort sequence direction value can be either 'A' (ascending) or 'D'
(descending). The field type designator and the sort sequence direction can be
omitted for the last named field only. They default to 'C' (character) and 'A'
(ascending), respectively.

TBSORT

Chapter 2. Description of the ISPF services 287

In some languages, the comma is used in place of a decimal point. To
accommodate different usages, three numeric representations are supported:
period, comma, and French representations.

Table 10. Decimal Point Representations

Convention Example Example Where Used

Period 1,234.56 0.789 Japan, Mexico, UK, USA

Comma 1.234,56 0,789 Most other countries

French 1234,56 0,789 France, South Africa

The TBSORT service accommodates these three numeric representations. The
convention used is determined by the language of the session, specified by the
value of ZLANG in the system profile table. The current English version
accepts only the period, treating it as the delimiter of the whole and decimal
portion of a number. Sorting is based on the specified language convention.

These restrictions apply to fields for a “numeric” type sort:
1. The field must be a decimal number and optionally can contain a plus (+)

or minus (-) sign. The decimal number can be either a whole number (for
example, 234) or a mixed number (for example, 234.56), composed of a
whole number followed by a decimal point. A decimal point is not required
after a whole number, but is required in a mixed number. (Under the
period convention, the decimal point is represented by a period (.); under
the comma or French conventions, the decimal point is represented by a
comma (,).) No other characters are allowed except leading blanks.

2. No numeric string can exceed 16 characters. This length value includes any
plus or minus sign, any blanks, or a decimal point.

3. The largest value that can be sorted is plus or minus 2 147 483 647.
4. The string can have leading blanks following the sign character.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

12 Table is not open.

16 Numeric convert error.

20 Severe error.

Example 1
Perform a sort on the LASTNAME field for table TELBOOK. Use the defaults of
“A” (ascending) and “C” (character).
ISPEXEC TBSORT TELBOOK FIELDS(LASTNAME)

Set the program variable BUFFER to contain:
TBSORT TELBOOK FIELDS(LASTNAME)

TBSORT

288 z/OS V2R2 ISPF Services Guide

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);
CALL ISPLINK (’TBSORT ’,’TELBOOK ’,’LASTNAME’);

Example 2
Perform a sort on table MODSIZES. Sort on NAME, a character field, in ascending
sequence. Then sort on SIZE, a numeric field, in descending sequence.
ISPEXEC TBSORT MODSIZES FIELDS(NAME,C,A,SIZE,N,D)

Set the program variable BUFFER to contain:
TBSORT MODSIZES FIELDS(NAME,C,A,SIZE,N,D)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBSORT ’,’MODSIZES’,’(NAME,C,A,SIZE,N,D)’);

TBSTATS—retrieve table statistics
The TBSTATS service obtains statistical information for a table and saves the
information in variables specified in the service request.

Table statistics are maintained with each physical table member stored on
permanent storage. The TBSTATS service provides access to these statistics from a
dialog. The TBSTATS service also provides status information regarding the current
usage of a specified table.

The statistics for a given table are available whether the table is open or closed.
The statistics reflect the table as it exists on the input table file, except when the
table is open in the logical screen where the TBSTATS service is issued. The
statistics then reflect the version of the table that is currently open.

The existence of a table can be checked by the value in the STATUS1 field. If the
table does not exist, no other processing takes place.

This statistical information is available:
v Date and time the table was created
v Date and time of last update
v Last user to update the table
v Number of rows when the table was created
v Current number of rows (zero if the table is empty)
v Number of existing rows that have been updated
v Number of times the table has been updated
v Last table service issued for the table (the table must be open)
v Return code associated with the last table service (the table must be open)
v Whether the table is available for WRITE mode processing
v Whether the table exists in the table input file chain
v Whether the table is open for this logical screen
v Number of bytes of virtual storage required by the table

TBSORT

Chapter 2. Description of the ISPF services 289

For statistical purposes, two table processes have been defined. The “create
process” is defined as beginning with the TBCREATE and ending with a TBCLOSE
or TBEND. The “update process” is defined as beginning with the TBOPEN and
ending with a TBCLOSE or TBEND.

Command invocation format

�� ISPEXEC TBSTATS table-name
CDATE(date-created-name)

�

�
CTIME(time-created-name) UDATE(date-updated-name)

�

�
UTIME(time-updated-name) USER(user-name)

�

�
ROWCREAT(row-created-name) ROWCURR(rownum-name)

�

�
ROWUPD(row-updated-name) TABLEUPD(table-updated-name)

�

�
SERVICE(service-name) RETCODE(return-code-name)

�

�
STATUS1(status1-name) STATUS2(status2-name)

�

�
STATUS3(status3-name) LIBRARY(library)

�

�
VIRTSIZE(virtual-storage-size-name)

�

�
CDATE4D(date-created-name-4-digit)

�

�
UDATE4D(date-updated-name-4-digit)

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('TBSTATS�' , table-name , date-created-name
'�'

�

� , time-created-name
'�'

, date-updated-name
'�'

, time-updated-name
'�'

�

� , user-name
'�'

, row-created-name
'�'

, rownum-name
'�'

�

TBSTATS

290 z/OS V2R2 ISPF Services Guide

� , row-updated-name
'�'

, table-updated-name
'�'

, service-name
'�'

�

� , return-code-name
'�'

, status1-name
'�'

, status2-name
'�'

�

� , status3-name
'�'

, library
'�'

, virtual-storage-size-name
'�'

�

� , date-created-name-4-digit
'�'

, date-updated-name-4-digit);
'�'

��

Parameters
table-name

Specifies the name of the table for which statistical information is to be
obtained.

date-created-name
Specifies the name of a variable where the date the table was created is to be
stored. The date is returned in the form YY/MM/DD.

time-created-name
Specifies the name of a variable where the time the table was created is to be
stored. The time is returned in the form HH.MM.SS.

date-updated-name
Specifies the name of a variable where the date the table was last updated is to
be stored. The date is returned in the form YY/MM/DD.

time-updated-name
Specifies the name of a variable where the time the table was last updated is to
be stored. The time is returned in the form HH.MM.SS.

user-name
Specifies the name of a variable where the userid of the user that created or
last updated the table is to be stored.

row-created-name
Specifies the name of a variable where the number of rows that existed at the
end of the “create process” is to be stored.

rownum-name
Specifies the name of a variable where the number of rows contained in the
table is to be stored.

row-updated-name
Specifies the name of a variable where the number of updated rows is to be
stored. This is the number of existing rows that have been updated by TBPUT
or TBMOD. During the “update process,” rows that are added to the table are
included in this number. Any row that increments this number, when deleted,
will decrement this number.

table-updated-name
Specifies the name of a variable where the number of times this table has been
updated is to be stored. This is the number of “update processes” that have
occurred in which at least one row has been updated.

TBSTATS

Chapter 2. Description of the ISPF services 291

service-name
Specifies the name of a variable where the last table services command issued
for this table is to be stored. This value is returned only if the table is currently
open for the same logical screen.

return-code-name
Specifies the name of a variable where the return code associated with the last
table services command issued for this table is to be stored. This value is
returned only if the table is currently open to the same logical screen.

status1-name
Specifies the name of a variable where the status of the table in the table input
library chain is to be stored. Values that can be stored and their meanings are:
1 table exists in the table input library chain
2 table does not exist in the table input library chain
3 table input library is not allocated

status2-name
Specifies the name of a variable where the status of the table in this logical
screen is to be stored. Values that can be stored and their meanings are:
1 table is not open in this logical screen
2 table is open in NOWRITE mode in this logical screen
3 table is open in WRITE mode in this logical screen
4 table is open in SHARED NOWRITE mode in this logical screen
5 table is open in SHARED WRITE mode in this logical screen

status3-name
Specifies the name of a variable where the availability of the table to be used
in WRITE mode is to be stored. Values that can be stored and their meanings
are:
1 table is available for WRITE mode
2 table is not available for WRITE mode

library
Specifies the ddname of a FILEDEF command or the lib-type of the LIBDEF
service request that defines an optional input file definition and provides
control for the table input source. If omitted, the default is ISPTLIB.

virtual-storage-size-name
Specifies the name of a variable where the number of bytes of virtual storage
required by the table is to be stored.

date-created-name-4-digit
Specifies the name of a variable where the date the table was created is to be
stored. The date is returned in the form YYYY/MM/DD.

date-updated-name-4-digit
Specifies the name of a variable where the date the table was last updated is to
be stored. The date is returned in the form YYYY/MM/DD.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

TBSTATS

292 z/OS V2R2 ISPF Services Guide

0 Normal completion (returned even if the table does not exist).

16 Variable value has been truncated.

20 Severe error.

Example
Determine the date when the table TELBOOK was created and when it was last
updated.
ISPEXEC TBSTATS TELBOOK CDATE(DATE1) UDATE(DATE2)

Set the program variable BUFFER to contain:
TBSTATS TELBOOK CDATE(DATE1) UDATE(DATE2)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBSTATS ’,’TELBOOK ’,’DATE1 ’,’ ’,’DATE2 ’);

TBTOP—set the row pointer to the top
The TBTOP service sets the current row pointer (CRP) to the top of a table, ahead
of the first row.

Command invocation format

�� ISPEXEC TBTOP table-name ��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('TBTOP���' , table-name); ��

Parameters
table-name

Specifies the name of the table to be used.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

TBSTATS

Chapter 2. Description of the ISPF services 293

Return codes
These return codes are possible:

0 Normal completion.

12 Table is not open.

20 Severe error.

Example
For the table TELBOOK, move the current row pointer (CRP) to the row
immediately before its first row.
ISPEXEC TBTOP TELBOOK

Set the program variable BUFFER to contain:
TBTOP TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBTOP ’,’TELBOOK ’);

TBVCLEAR—clear table variables
The TBVCLEAR service sets dialog variables to nulls.

All dialog variables that correspond to columns in the table, specified when the
table was created, are cleared.

The contents of the table and the position of the current row pointer (CRP) are not
changed by this service.

Command invocation format

�� ISPEXEC TBVCLEAR table-name ��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('TBVCLEAR' , table-name); ��

Parameters
table-name

Specifies the name of the table to be used.

TBTOP

294 z/OS V2R2 ISPF Services Guide

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

12 Table is not open.

20 Severe error.

Example
Clear dialog variables associated with the table TELBOOK.
ISPEXEC TBVCLEAR TELBOOK

Set the program variable BUFFER to contain:
TBVCLEAR TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’TBVCLEAR’,’TELBOOK ’);

TRANS—translate CCSID data
The TRANS dialog service translates data from one Coded Character Set Identifier
(CCSID) to another. A maximum variable size of 32 767 bytes of data can be
translated. There is no automatic transformation of single-byte to double-byte data
or double-byte to single-byte data. This service is available through the ISPEXEC
and ISPLINK interfaces. See the z/OS V2R2 ISPF Dialog Developer's Guide and
Reference.

Command invocation format

�� ISPEXEC TRANS FRMCCSID(from-ccsid-number) TOCCSID(to-ccsid-number) �

� FROMVAR(from-variable-name)
TOVAR(to-variable-name)

�

�
LENGTH(data-length)

��

Call invocation format

�� CALL ISPEXEC (buflen, buffer) ��

TBVCLEAR

Chapter 2. Description of the ISPF services 295

or

�� CALL ISPLINK ('TRANS���' �

� ,from-ccsid-number,to-ccsid-number,from-variable-name �

� , to-variable-name
'�'

, data-length);
'�'

��

Parameters
from-ccsid-number

Required parameter. The from-ccsid-number is a 5-digit decimal (5 character
position) number that specifies the current CCSID of the variable data before
translation.

to-ccsid-number
Required parameter. The to-ccsid-number is a 5-digit decimal (5 character
position) number that specifies the CCSID the variable data will be translated
to.

from-variable-name
Required parameter. Specifies the name of a dialog variable that contains the
source data to be translated. The translated data is returned in this variable if
the TOVAR parameter is omitted.

to-variable-name
Optional parameter. Specifies the name of a dialog variable that receives the
translated data. A truncation error occurs if this variable is not large enough to
hold the translated data. Only the translated data is stored in this variable. The
translated data is returned in the dialog variable identified by the FROMVAR
parameter if this parameter is omitted.

data-length
Optional parameter. The length of data in the source variable that is translated.
This number must be an integer from 0 to 32 767. A zero value results in this
parameter being ignored. For call invocation, this parameter must be a
fullword fixed binary number. If this parameter is specified, the smaller of its
value and the length of source variable data is used. If this parameter is
omitted, the length of the source variable data determines the amount of data
that is translated. Only the translated data is stored in the receiving variable.

Return codes
0 Service completed successfully.

4 Translate tables do not support the requested “to ... from” combination. For
a list of extended code page translate tables provided by ISPF, see the z/OS
V2R2 ISPF Dialog Developer's Guide and Reference.

8 From variable not found.

16 Variable services indicated a translation error or truncation occurred
storing the translated data.

20 Severe error.

VCOPY—create a copy of a variable
This service is used only with CALL ISPLINK or CALL ISPLNK calls.

TRANS

296 z/OS V2R2 ISPF Services Guide

The VCOPY service allows a program module to obtain a copy of dialog variables.
The copied data is in character string format and can be accessed in either “locate”
or “move” mode.

The variable names can be specified as a single 8-character value, a list enclosed in
parentheses, or a name-list structure. In LOCATE mode an array of pointers must
be supplied to receive the data address. An array of lengths must be supplied to
receive the data lengths.

In locate mode, the VCOPY service automatically allocates storage for the data,
and returns the address and length of each variable to the caller.

In move mode, an array of lengths must be supplied on input. Its values map the
structured area which must be supplied to receive the data. The caller first
allocates storage for the data, and then invokes VCOPY, passing the address and
length of the storage area into which the data is to be copied. The length array is
then set with the data lengths.

When a variable has been masked and is accessed by VCOPY, the output string
will contain the mask characters. When specifying the length to receive these
variables on the VCOPY call, the length should be as long as the mask, not the
defined variable. See “VMASK—mask and edit processing” on page 328 for a full
description of the VMASK service.

As with other DM component services, the search for each variable starts with the
defined area of the function pool, followed by the function's implicit area, followed
by the shared pool, and then the profile pool. If a variable of the specified name is
not found, VCOPY issues a return code of 8.

Command invocation format
ISPEXEC *This service does not apply to APL2 or command

procedures*

Call invocation format

�� CALL ISPLINK ('VCOPY���' , name-list, length-array, value-array �

�
'LOCATE��'

, '�'
'MOVE����'

); ��

Parameters
name-list

Specifies an area containing the names of dialog variables to be copied. The
standard name-list format is used.

length-array
Specifies an array of fullword fields containing the lengths of the data areas for
the dialog variable values. The array can consist of a single item. In move
mode, each element of the array is set by the caller to the output area size. In
move or locate mode, each element of the array is set by the service to the

VCOPY

Chapter 2. Description of the ISPF services 297

number of bytes of data for the corresponding variable. The length does not
include trailing blanks unless the variable is defined to maintain blanks. For
example:
v VCOPYing a variable that was defined using VDEFINE with the NOBSCAN

option
v VCOPYing a REXX variable that was explicitly set with trailing blanks and

then VPUT to the SHARED or PROFILE pool.

value-array
In locate mode, specifies the name of an array that contains pointers to fields
into which the copied variables are placed. The array can consist of a single
item. In move mode, specifies the name of a structure that is mapped by the
length array.

LOCATE
Specifies locate mode. The address of the copied value is returned to the user
invoking the service. This is the default mode.

MOVE
Specifies move mode. The copied value is returned to the user invoking the
service.

Return codes
These return codes are possible:

0 Normal completion.

8 One or more variables do not exist.

12 Validation failed.

16 Truncation has occurred during data movement (move mode only).

20 Severe error.

Example
Copy the value in dialog variable QROW to a field named QROWSDATA in this
PL/I program module. Perform the copy in move mode, as opposed to locate
mode. Variable L8 contains a value of 8.
CALL ISPLINK (’VCOPY ’,’QROW ’,L8,QROWDATA,’MOVE ’);

VDEFINE—define function variables
The VDEFINE service is used only with CALL ISPLINK or CALL ISPLNK calls.

The VDEFINE service is invoked by a program to give ISPF the ability to use
dialog variable names to directly access variables within the particular program
module. In the call to VDEFINE, the program specifies the format (character string,
fixed binary, bit string, hex, float, pack(n), binstr, DBCS, or user-defined) and
length of the variables. Stacking of definitions for a particular dialog variable can
be achieved by successive calls to VDEFINE for that dialog variable.

When the VDEFINE service is called, ISPF enters the dialog variable names into
the function pool for the dialog function currently in control. Dialog variables
entered in the function pool by use of the VDEFINE service are called defined
variables to distinguish them from implicit variables in the function pool.

VCOPY

298 z/OS V2R2 ISPF Services Guide

A list of dialog variables can be defined with a single call to the VDEFINE service.
The program variables that correspond to the dialog variables defined to ISPF by
VDEFINE must be in contiguous locations in storage or defined as an array or
structure within the program. Also, unless you specify LIST as an option in the
options list referred to by the service request, all variables must have the same
format and length. The program variable name passed to ISPF must be the name
of the first variable as defined in the program, the name of the array, or the name
of the structure.

When the LIST option is used, programs can VDEFINE only selected application
variables in a dialog application structure. This is accomplished by specifying an
asterisk (*) as a placeholder in the name-list and in the corresponding position in
the format definition array for those portions of dialog application storage that are
not to be considered by VDEFINE. The * place-holder (in the name-list and the
format) allows ISPF to determine the address of the dialog application storage of
the next true variable name in the name-list. This is determined by the
corresponding length in the length array parameter.

Before issuing the VDEFINE service request (with the LIST parameter specified)
the function must create two arrays to specify the formats and lengths of the
variables to be defined. The first array defines, in sequence, the format (character
string, fixed binary, and so forth) of each variable. The second array defines, in
sequence, the length (in bytes) of each variable. Variable names in the name-list
that you specify on the VDEFINE request must be in the same relative positions as
the corresponding format and length definitions in the arrays.

Command invocation format
ISPEXEC *This service does not apply to APL2 or command

procedures*

Call invocation format

�� CALL ISPLINK ('VDEFINE�' , name-list, variable, format, length �

� , options-list
'�'

, user-data
'�'

, 'LFORMAT');
'�'

��

Parameters
name-list

Specifies the symbolic name or name-list to be used by ISPF when referencing
the specified variables.

An asterisk, in conjunction with the USER format keyword, specifies that the
exit routine, whose address is specified in the user-data parameter, is to be
called for variables not found in the function pool.

An asterisk (*) in the name-list, in conjunction with an asterisk in the format
parameter, specifies that the storage represented by the corresponding physical
length in the length parameter is to be skipped when calculating the address of
the next name in the name-list. When this facility is used, LIST must be
specified in the options-list parameter.

VDEFINE

Chapter 2. Description of the ISPF services 299

variable
Specifies the variable whose storage is to be used. If a name list is passed, this
storage contains an array of variables. The number of names in the list
determines the dimension of the array.

When LIST is specified for options-list, this parameter is the name of a variable
or structure whose storage is used for dialog variables in the name list. This
storage is assigned to dialog variables in the order that they appear in the
name-list, and according to the length array mapping.

format
Specifies the data conversion format.

When LIST is specified for options-list, this parameter is the name of an array
of CHAR(8) fields, one for each variable in the name-list. Each element of this
array defines the data format of the variable in the corresponding position in
the name-list. Entries must be left-justified and padded with blanks. There
must be at least as many array elements as there are names in the name-list.
You can use an asterisk in the format list to have application storage not be
considered by VDEFINE. See the previous discussion under the name-list
parameter.

Valid formats are:

BINSTR—Binary String
ISPF provides the binary string data format to support dialog applications
written in the C language. When a variable defined as BINSTR is updated
in the function pool, ISPF pads with binary zeros. This is desirable within
C function programs, because the C language uses binary zeros to mark
the end of a character string.

In updating this type of variable, ISPF stores only up to “length - 1”
amount of significant data and places a null terminator in the last position.
Because the updated data contains the binary zero, the length of the
variable should be greater than 1.

BIT
Bit string, represented by the characters 0 or 1. Within the variable, the
data is left-justified and padded on the right with binary zeros. For these
variables, a null value is stored as binary zeros and cannot be
distinguished from a zero value.

CHAR
Character string. Within the variable, the data is left-justified and padded
on the right with blanks.

No data conversion is performed when fetching and storing a CHAR
variable, nor is there any checking for valid characters. In PL/I, a character
string to be used as a dialog variable must be declared as fixed length,
because VDEFINE cannot distinguish variable-length PL/I strings.

DBCS
DBCS string. Within the variable, the data is left-justified and padded on
the right with blanks. The variable must not contain shift-out or shift-in
characters and it must be even in length.

No data conversion is performed when fetching and storing a DBCS
variable, nor is there any checking for valid characters.

FIXED
Fixed binary integer, represented by the characters 0-9.

VDEFINE

300 z/OS V2R2 ISPF Services Guide

Fixed variables that have a length of 4 bytes (fullword) are treated as
signed, represented by the absence or presence of a leading minus sign (-).
They can also have a null value, which is stored as the maximum negative
number (X'80000000').

Fixed variables that have a length of less than 4 bytes are treated as
unsigned. For these variables, a null value is stored as binary zeros, and
cannot be distinguished from a zero value.

FLOAT—Floating Point
The floating point data format is used for variables consisting of numeric
values stored in characteristic/mantissa form.

Format type FLOAT dialog variables are displayed (and stored in the
shared and profile pool) in character representation with the decimal
separator.

Floating point numbers are processed as real numbers. A single-precision
number is processed as a 32-bit real number and can have 7 or 8
significant digits. A double-precision number is processed as a 64-bit real
and can have 13 or 14 significant digits. For single-precision floating point
numbers, up to 7 digits is displayed as a real number. Any number greater
than 7 digits is represented in exponential notation.

For example, for short floating point numbers,

VALUE
REPRESENTATION

1234567
1234567

12345678
1.234568E+⁰⁷

123.4567
123.4567

123.45678
123.4568

For double-precision floating point numbers, the limit is 13 digits.

The length that you specify for this type must equal the total number of
bytes of program storage that the variable uses. FLOAT variables can have
a length of 4 or 8 bytes. A FLOAT variable defined with a length of 4 bytes
is considered single precision and with 8 bytes is considered double
precision.

The magnitude (M) of a floating point number supported by ISPF is:
5.4 × 10-⁷⁹ ≤ M ≤ 7.2 × 10+⁷⁵

ISPF converts floating point numbers between the real number and
character formats. Because of this conversion, rounding is not predictable
for single precision numbers when the digit being rounded is a 5.

HEX
Bit string, represented by the characters 0-9 and A-F. Within the variable,
the data is left-justified and padded on the right with binary zeros. For
these variables, a null value is stored as binary zeros and cannot be
distinguished from a zero value.

VDEFINE

Chapter 2. Description of the ISPF services 301

PACK | PACK(n)—Packed Decimal
The packed decimal data format provides support for COBOL and
corresponds to a COBOL COMP-3 data type. Packed decimal variables
consist of right-justified numeric values stored such that each decimal digit
takes up one-half byte. All bytes contain 2 decimal digits, except for the
last byte in the variable. The last byte consists of the least significant
decimal digit followed by a representation of the sign. The maximum
number of digits in a PACKed variable is 18 as specified by ANSI COBOL
standard. This results in the number of digits always being an odd
number.

The valid values to represent the sign are the hexadecimal digits C for
positive and D for negative. If the sign is any other hexadecimal digit, the
value is considered to be unsigned.

The length that you specify for this type must equal the total number of
bytes of program storage that the variable uses. PACK variables can have a
length of 1-10 bytes.

When you define a variable as having a PACK(n) data format, n specifies
the number of digits to appear to the right of the assumed decimal point.
For example, the value of a variable when defined is 12345. The assumed
decimal position would occur before the 1 if defined as PACK(5), after the
1 if defined as PACK(4), after the 2 if defined as PACK(3), and so on.
PACK without (n) specified is equivalent to PACK(0).

Variables defined as PACK or PACK(n) are converted to character
representation when retrieved from the function pool. If the variable is
defined as PACK(n), and n is greater than zero, the converted number will
contain a decimal separator followed by n digits after the assumed decimal
point.

When a variable defined as PACK(n) is updated in the function pool, ISPF
will pad the variable with zeros or truncate on either end to ensure the
variable contains the correct number of digits to the right of the assumed
decimal separator.

The value of n must be in the range 0-18.

USER
Specifies that the format is to be determined by the user. Any conversion
format is allowed. A conversion routine must be specified and is specified
by naming it in the user-data parameter.

length
Specifies the length of the variable storage, in bytes. This parameter must
be a fullword fixed binary integer. The maximum length for a FIXED
variable is 4 bytes, for PACK(n) variables is 10 bytes, and for FLOAT
variables is 8 bytes. The maximum length for other types of variables is
32 767 bytes.

For character variables in a C program, this length should be one less than
the length of the program variable. This allows for the null terminator at
the end of the string. Always initialize variables for the length specified in
this parameter, unless you are using the BINSTR parameter.

When LIST is specified as an option in the options-list, this parameter is
the name of an array of fullword fixed binary integers. Each element of
this array defines the data length of the variable in the corresponding
position of the name-list. There must be at least as many array elements as
there are names in the name-list.

VDEFINE

302 z/OS V2R2 ISPF Services Guide

options-list
Specifies initialization of the defined storage and/or retention of trailing
blanks in variable data. The options-list parameters are COPY, NOBSCAN,
and LIST. They are specified in the name-list format.

Note: Option-list parameters cannot be specified if the USER format
keyword and a name-list of asterisk (*) have been selected.

COPY
Specifies that any dialog variable with the same name can be used to
initialize the defined storage. The variable pools are searched in the
standard function pool, shared pool, profile pool sequence.

Note: If the variable being defined is smaller than the retrieved value,
the service request terminates and returns to the caller. In this case, if
you have specified the LIST option, the remainder of the list is not
processed.

NOBSCAN
Specifies that any trailing blanks in the variables are to remain in the
variables.

LIST
Specifies that the variables in the name-list to be defined to ISPF are of
varying formats (format array) and lengths (length array).

When the LIST option is used, programs can VDEFINE only selected
application variables in a dialog application structure. This is
accomplished by specifying an asterisk (*) as a placeholder in the
name-list and in the corresponding position in the format definition
array for those portions of dialog application storage that are not to be
considered by VDEFINE. The asterisk place-holder (in the name-list
and the format) allows ISPF to determine the address of the dialog
application storage of the next true variable name in the name-list. This
is determined by the corresponding length in the length array
parameter.

user-data
Specifies the storage location that contains the entry point address of
the conversion subroutine followed by any other data that should be
passed to the routine.

The exit is given control in 31-bit mode if either the VDEFINE dialog
service is invoked in 31-bit mode or the high-order bit of the user-exit
address is on as specified for the VDEFINE service. The high-order bit
contains the AMODE and the remainder of the word contains the
address. If bit 0 contains 1, the exit routine is given control in 31-bit
addressing mode.

This parameter is specified whenever the USER parameter is specified.

LFORMAT
Indicates the specified name-list variables all have the same format.

Return codes
These return codes are possible:

0 Normal completion.

8 Variable not found.

VDEFINE

Chapter 2. Description of the ISPF services 303

16 Data truncation occurred.

20 Severe error.

Examples
See:
v “Example 1: Error message variable”
v “Example 2: Different data formats”
v “Example 3: Variables in a structure”
v “Example 4: Character data variables” on page 305

Example 1: Error message variable
Establish ISPF accessibility, using the name MSGNAME, to a field named ERRMSG
in this PL/I module. The field is a character string and is 8 bytes long. Program
variable L8 contains a value of 8.
CALL ISPLINK (’VDEFINE ’,’(MSGNAME)’,ERRMSG,’CHAR ’,L8);

Example 2: Different data formats
Define three variables (FVAR, CVAR, and DVAR) with data formats of FIXED,
CHAR, and DBCS, and with lengths of 4, 5, and 20, respectively.
DECLARE

1 VARS,
3 FVAR FIXED BIN(31),
3 CVAR CHAR(5),
3 DVAR CHAR(20),

FARR(3) CHAR(8),
LARR(3) FIXED BIN(31);

FARR(1) = ’FIXED’;
FARR(2) = ’CHAR’;
FARR(3) = ’DBCS’;
LARR(1) = 4;
LARR(2) = 5;
LARR(3) = 20;

CALL ISPLINK (’VDEFINE ’,’(FVAR CVAR DVAR)’,
VARS,FARR,LARR,’LIST ’);

Example 3: Variables in a structure
Define two dialog variables, VAR1 and VAR2, contained in a structure. The
structure is named STRCVARS. It contains other data that is not used.

┌─────────┬───────┬──────────────────┐
│ VAR1 │ * │ VAR2 │
!─────────┴───────┴──────────────────┘

offset 1 5 8 9 16

DECLARE

1 STRCVARS,
3 VAR1 FIXED BIN(31),
3 FILLER CHAR(4),
3 VAR2 CHAR(8)

FARR(3) CHAR(8),
LARR(3) FIXED BIN(31);

FARR(1) = ’FIXED ’;
FARR(2) = ’*’;
FARR(3) = ’CHAR ’;
LARR(1) = 4;
LARR(2) = 4;
LARR(3) = 8;

VDEFINE

304 z/OS V2R2 ISPF Services Guide

CALL ISPLINK(’VDEFINE ’,’(VAR1 * VAR2)’,
STRCVARS,FARR,LARR,’LIST ’);

Example 4: Character data variables
Define three variables (CVAR1, CVAR2, and CVAR3) all with data format of CHAR
and lengths 4, 4, and 8 respectively.
DECLARE

1 VARS,
3 CVAR1 CHAR(4),
3 CVAR2 CHAR(4),
3 CVAR3 CHAR(8),

FVAR CHAR(8),
LARR(3) FIXED BIN(31);

FVAR = ’CHAR’;
LARR(1) = 4;
LARR(2) = 4;
LARR(3) = 8;

CALL ISPLINK (’VDEFINE ’,’(CVAR1 CVAR2 CVAR3)’,
VARS,FVAR,LARR,’LIST ’,’ ’,’LFORMAT’);

VDEFINE exit routine
The dialog writer can specify an exit routine to define dialog variables when
program variables are non-standard (other than BINSTR, BIT, CHAR, DBCS,
FLOAT, FIXED, HEX, PACK, or PACK(N)). Then, when a variable is accessed by
any DM component service, the exit routine is invoked to perform any conversion
necessary between the program variable's format and the character string format
required for a dialog variable.

The dialog writer must specify this information in the dialog function that
VDEFINEs the variables to be formatted by the exit routine:
1. A storage location must be defined that contains the entry point address of the

user exit and any other user data that should be passed to the exit routine. For
example:
DECLARE USERXT EXTERNAL ENTRY; /*USERXT IS THE NAME OF THE*/

/*EXIT ROUTINE */
DECLARE 1 XITINFOR,

2 XITPTR ENTRY VARIABLE,
2 USERDATA CHARACTER; /*CONTAIN ANY USER DATA TO */

/*BE PASSED TO THE EXIT */
/*ROUTINE */

2. The VDEFINE must specify a format of USER and specify the area that
contains the address of the exit routine and the user data field. If the defined
variable name is '*', all unresolved dialog variable accesses result in the call of
the exit routine. Unresolved dialog variables are those that were not implicitly
entered or defined in the function pool.
ISPLINK (’VDEFINE ’, ’(VAR)’, VAR,

’USER ’, 4, ’ ’, XITINFOR)

ISPF invokes the exit routine using a call (BALR 14,15), and standard OS linkage
conventions must be followed. The parameters passed by ISPF to the exit routine
are shown on the call. The exit is invoked with:
CALL XRTN(UDATA, /* invoke exit and pass user area */

SRVCODE, /* request code */
NAMESTR, /* name length and name chars */
DEFLEN, /* defined area length */

VDEFINE

Chapter 2. Description of the ISPF services 305

DEFAREA, /* defined area */
SPFDLEN, /* ISPF data length */
SPFDATAP); /* ISPF data address */

UDATA
An area that follows the exit routine address parameter, specified on the
VDEFINE statement. This area can contain any additional information the user
desires. Its format is CHAR(*).

If more than one variable is defined using the same exit routine, the dialog
must ensure that the length and address of the converted data for each
variable are returned to ISPF in unique locations. Otherwise, unexpected
results can occur if a service, such as TBADD, is called with two or more of
these variables.

In the example, UDATA points to an area that contains addresses for SPFDLEN
and SPFDATAP to be used for the variable VAR.

SRVCODE
Service request-type code, as a fullword fixed value. The allowable values are 0
for a read and 1 for a write. Other values should be accepted without error, to
allow further extensions. Codes of 2 and 3 are used by the dialog test facility
variable query function. Code 2 is a request for the number of variables to be
returned in the SPFDLEN field. Code 3 is a request for the names of the
variables to be returned in the buffer pointed to by SPFDATAP. The names are
entered as contiguous 8-byte tokens.

NAMESTR
Name of the dialog variable being requested, preceded by the 1-byte name
length.

DEFLEN
The length of the area specified to the VDEFINE service. Its format is a
fullword fixed value.

DEFAREA
The area specified to the VDEFINE service. Its format is CHAR(*).

SPFDLEN
For a write request, the length of the SPFDATA area is supplied by ISPF to the
exit routine. For a read request, the length of the data is returned to ISPF. It
must be supplied by the exit routine. Its format is a fullword fixed value.

SPFDATAP
For a write request, the address of the data to be stored is supplied by ISPF to
the exit routine. For a read request, the address of the data is returned to ISPF.
Its format is a fullword pointer.

Return codes
These return codes are possible and should be set in the exit routine:

0 Successful operation.

8 Variable not found on read request.

Others
Severe error

Example of Using the VDEFINE Exit

* THIS CSECT, NAMED USERXT, IS A SIMPLE EXAMPLE OF A *
* VDEFINE EXIT. ITS PURPOSE IS TO ILLUSTRATE HOW TO *
* USE THE VDEFINE EXIT INTERFACE. USERXT CONVERTS BINARY *

VDEFINE

306 z/OS V2R2 ISPF Services Guide

* DATA IN A PROGRAM TO CHARACTER DATA USED BY ISPF. *
* GENERALLY, AN EXIT ROUTINE IS NOT REQUIRED TO DO THIS *
* CONVERSION, BECAUSE ISPF PROVIDES THE CAPABILITY TO DO *
* THE CONVERSION. *
* *
* THIS EXAMPLE ASSUMES THAT ALL VARIABLES PASSED FOR *
* CONVERSION HAVE BEEN EXPLICITLY DEFINED TO ISPF *
* (USING THE VDEFINE SERVICE), AND ARE, THEREFORE, IN THE *
* FUNCTION POOL. IT DOES NOT TAKE INTO CONSIDERATION THE *
* CASE OF AN ASTERISK (*) BEING SPECIFIED FOR THE *
* NAME-LIST PARAMETER OF THE VDEFINE SERVICE. SEE THE *
* VDEFINE SERVICE DESCRIPTION FOR MORE INFORMATION. *
* *
* USERXT IS INVOKED BY ISPF USING A CALL (BALR 14,15) AS *
* SHOWN BELOW. STANDARD OS LINKAGE CONVENTIONS MUST BE *
* FOLLOWED. USERXT IS INVOKED AS FOLLOWS: *
* CALL USERXT(UDATA, /* USER DATA */*
* SRVCODE, /* SERVICE REQUEST CODE */*
* NAMESTR, /* NAME LENGTH AND NAME */*
* DEFLEN, /* LENGTH OF AREA SPECIFIED TO */*
* VDEFINE */*
* DEFAREA, /* AREA SPECIFIED TO VDEFINE */*
* SPFDLEN, /* ISPF DATA LENGTH */*
* SPFDATAP);/* ISPF DATA ADDRESS */*
* *
* *

USERXT CSECT

STM 14,12,12(13) * STANDARD LINKAGE *
BALR 12,0
USING *,12
ST 13,SAVE+4
LA 15,SAVE
ST 15,8(13)
LR 13,15

**
* DETERMINE SERVICE REQUESTED. A SRVCODE OF 0 IS A READ REQUEST *
* AND A SRVCODE OF 1 IS A WRITE REQUEST. *
**

L 2,4(1) * OBTAIN SRVCODE PARAMETER *
XR 3,3 * GET 0, 0 REPRESENTS A READ *
C 3,0(2) * COMPARE THE SRVCODE TO 0 *
BE READ * BRANCH TO READ IF SRVCODE IS 0 *
LA 3,1 * GET 1, 1 REPRESENTS A WRITE *
C 3,0(2) * COMPARE THE SRVCODE TO 1 *
BNE END * BRANCH TO THE END IF NOT A WRITE *

**
* FOR A WRITE REQUEST THE LENGTH OF THE SPFDATA AREA IS SUPPLIED *
* AND THE ADDRESS OF THE DATA TO BE STORED IS SUPPLIED. THE *
* DEFAREA WILL BE UPDATED WITH THE CONVERTED DATA. *
**
WRITE L 2,20(1) * OBTAIN SPFDLEN PARAMETER *

L 4,0(2) * *
ST 4,SPFLEN * SAVE THE SPFDLEN PARAMETER *
S 4,ONE * DECREMENT BY ONE FOR EXECUTE *
L 5,WRKLEN * OBTAIN LENGTH OF THE WRKAREA *
XR 4,5 * COMBINE THE EXECUTE LENGTHS *
L 2,24(1) * OBTAIN SPFDATAP PARAMETER *
L 3,0(2) * *
XC WRKAREA,WRKAREA * CLEAR THE WRKAREA *
EX 4,PACK * EXECUTE THE PACK COMMAND *
CVB 6,WRKAREA * CONVERT THE DATA TO BINARY *
ST 6,TEMP * STORE THE CONVERTED DATA *
L 2,16(1) * OBTAIN THE DEFAREA PARAMETER *
MVC 0(4,2),TEMP * STORE CONVERTED DATA IN DEFAREA *
B END

**

VDEFINE

Chapter 2. Description of the ISPF services 307

* FOR A READ REQUEST THE LENGTH OF THE DATA AND THE ADDRESS OF *
* THE DATA ARE RETURNED TO ISPF. THE DATA AND ITS LENGTH ARE *
* OBTAINED FROM THE DEFAREA AND DEFLEN. *
**
READ XC WRKAREA,WRKAREA * CLEAR THE WRKAREA *

L 5,0(1) * ADDRESS OF USER DATA *
USING UDATA,5 * GET ADDRESSABILITY *
L 2,16(1) * OBTAIN THE DEFAREA PARAMETER *
L 6,0(2) * OBTAIN THE DATA *
CVD 6,WRKAREA * CONVERT THE DATA TO DECIMAL *
L 7,CONVADD * ADDRESS TO STORE CONVERTED DATA*
UNPK 0(7),WRKAREA * UNPACK THE DATA *
MVZ 14(1,7),0(7) * MOVE THE ZONE *
L 2,24(1) * OBTAIN THE SPFDATAP PARAMETER *
ST 7,0(2) * RETURN THE ADDRESS OF THE DATA *
L 7,CONVLNG * ADDR TO STORE CONV DATA LENGTH *
L 4,FIFTEEN * RETURN THE LENGTH OF THE DATA *
ST 4,0(7) * *
L 2,20(1) * OBTAIN THE SPFDLEN PARAMETER *
ST 7,0(2) * RETURN THE LENGTH OF THE DATA *

END SR 15,15 * SET GOOD RETURN CODE *
L 13,SAVE+4 * STANDARD EXIT LINKAGE *
L 14,12(13)
LM 0,12,20(13)
BR 14
DS 0H

PACK PACK WRKAREA(0),0(0,3)
SAVE DC 18F’0’ * REGISTER SAVE AREA *
WRKAREA DS D * CONVERSION WORKAREA *
SPFLEN DS F * LENGTH OF DATA FROM ISPF *
TEMP DS F * CONVERSION TEMPORARY AREA *
ONE DC F’1’ * CONSTANT 1 *
FIFTEEN DC F’15’ * LENGTH OF OUTDATA *
WRKLEN DC X’00000070’ * LENGTH OF WRKAREA FOR EXECUTE *
UDATA DSECT * USER DATA *
CONVLNG DS AL(4) * ADDRESS OF CONV DATA LENGTH *
CONVADD DS AL(4) * ADDRESS OF CONV DATA *

END USERXT

VDELETE—remove a definition of function variables
The VDELETE service is used only with CALL ISPLINK or CALL ISPLNK calls.

The VDELETE service removes variable names, previously defined by the program
module, from the function pool. This service is the opposite of VDEFINE.

Command invocation format
ISPEXEC *This service does not apply to APL2 or

command procedures*

Call invocation format

�� CALL ISPLINK ('VDELETE�' , name-list);
'NO������'

��

Parameters
name-list

Specifies the dialog variable names that are to be removed from the function
pool, or contains an asterisk.

VDEFINE

308 z/OS V2R2 ISPF Services Guide

An asterisk (*) specifies removal from the function pool of all dialog variable
names previously defined by the program module, including exit routine
definitions.

Return codes
These return codes are possible:

0 Normal completion.

8 At least one variable not found.

20 Severe error.

Example
Remove ISPF accessibility to a PL/I program variable that was previously
established by VDEFINE to be accessible using dialog variable name MSGNAME.
CALL ISPLINK (’VDELETE ’,’MSGNAME ’);

VERASE—remove variables from shared or profile pool
The VERASE service removes variable names and values from the shared pool, the
application profile pool, or both. System variables, variable type 'non-modifiable',
cannot be removed by using the VERASE service.

Command invocation format

�� ISPEXEC VERASE name-list
ASIS

SHARED
PROFILE
BOTH

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('VERASE��' , name-list
'ASIS����'

, '�'
SHARED '
'PROFILE�'
'BOTH����'

); ��

Parameters
name-list

Specifies the dialog variable names that are to be removed from the shared or
application profile pool.

ASIS
Specifies that the variables are to be removed from the shared pool or, if not
found in the shared pool, they are to be removed from the application profile
pool. ASIS is the default value.

VDELETE

Chapter 2. Description of the ISPF services 309

SHARED
Specifies that the variables are to be removed from the shared pool.

PROFILE
Specifies that the variables are to be removed from the application profile pool.

BOTH
Specifies that the variables are to be removed from both the shared pool and
the application profile pools.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

8 At least one variable not found.

20 Severe error.

Note:

1. ISPF processes the entire name list even if it cannot find one or more of the
variable names in the list.

2. With BOTH specified, a 0 return code indicates that ISPF found and removed
the variable from the profile and/or the shared pool. A return code of 8
indicates that ISPF did not find or remove the variable from either the profile
or the shared pool.

3. Be careful not to erase variables that provide functions for you during the ISPF
session. For example, if you erase function key variables (ZPF01-ZPF24) and do
not subsequently specify them, the keys become inoperative.

Example
In a CLIST, remove variables NAME, PHONE, and ADDRESS from both the
shared and application profile pools.
ISPEXEC VERASE (NAME PHONE ADDRESS) BOTH

or alternately

Set program variable BUFFER to:
VERASE (NAME PHONE ADDRESS) BOTH

Then set program variable BUFLEN to the length of variable BUFFER and issue
the command:

CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’VERASE ’,’(NAME PHONE ADDRESS)’,’BOTH ’);

VERASE

310 z/OS V2R2 ISPF Services Guide

VGET—retrieve variables from a pool or profile or system symbol
The VGET service copies values from dialog variables in the shared pool or the
application profile pool to the function pool variables with the same names. If a
named function variable already exists, it is updated. If not, it is created as an
implicit function variable, and then updated.

The VGET service can also copy values from system symbols. By default each
function variable is created with the same name as the corresponding system
symbol, but you can specify a different name.

Command invocation format

�� ISPEXEC VGET name-list
ASIS

SHARED
PROFILE
SYMDEF

SYMNAMES(symname-list)
��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('VGET����' , name-list
'ASIS����'

, '�'
'SHARED��'
'PROFILE�'
'SYMDEF��'

�

� , symname-list);
'�'

��

Parameters
name-list

Specifies the names of one or more dialog variables whose values are to be
copied from the shared or profile pool to the function pool. The names are
passed in the standard name-list format.

ASIS
Specifies that the variables are to be copied from the shared pool or, if not
found there, from the profile pool.

SHARED
Specifies that the variables are to be copied from the shared pool.

PROFILE
Specifies that the variables are to be copied from the application profile. A
shared pool variable with the same name is deleted, even if it is not found in
the profile pool.

VGET

Chapter 2. Description of the ISPF services 311

SYMDEF
The values for the variables defined by name-list are to be obtained from the
system symbols.

SYMNAMES(symname-list)
symname-list lists the names of one or more system symbols that are to be
obtained. It is specified in the same format as the name-list parameter. Where
symname-list is omitted, the system symbols obtained are the same as those
specified on the name-list parameter.

One reason why you might use the SYMNAMES parameter is that some
system symbols may have the same name as a reserved or read-only dialog
variable. In this case you must specify a different variable name in name-list
and specify the actual symbol name in symname-list. For example, SYSCLONE
is a read-only dialog variable in a CLIST. Therefore, this command would work
within a REXX exec, but it would fail in a CLIST:
VGET (SYSCLONE) SYMDEF

Instead, you could specify the command to obtain the current value for the
static symbol SYSCLONE and store it in a variable named CLONE:
ISPEXEC VGET (CLONE) SYMDEF SYMNAMES(SYSCLONE)

If there are fewer symbol names in symname-list than names in the name-list,
then the symbol names are used from the symname-list until there are no more
corresponding symbol names, then the remaining names in the name-list are
used. In other words, if there are five names in name-list and only three symbol
names, the symbol names are used for the first three symbols and the last two
names in the name-list are used for the remaining symbols.

If the number of symbol names in symname-list exceeds the number of names
in name-list, a severe error occurs.

This is an optional parameter. It is only valid when the SYMDEF parameter is
also specified.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

8 Variable not found. If the SYMDEF parameter was specified: system
symbol not found.

12 Validation failed.

16 Translation error or truncation occurred during data movement.

20 Severe error. If the SYMDEF parameter was specified: the number of
symbol names in symname-list exceeds the number of names in name-list.

VGET

312 z/OS V2R2 ISPF Services Guide

Note: If you issue a VGET request for a variable that does not exist in the pool
from which you are trying to copy (shared or profile), the value of the function
pool variable is still updated. Character variables are set to blanks. Fixed, bit, and
hex variables are set to nulls (all zeros).

Examples
In a CLIST, copy from the shared pool to the function pool values for variables
whose names are listed in variable VARLIST.
ISPEXEC VGET (&VARLIST) SHARED

In a PL/I program, VARLIST contains a list of variable names. Copy values for
these variables from the shared pool to the function pool. The variable VARLIST
has been made accessible to ISPF by a previous VDEFINE operation. Set the
program variable BUFFER to contain:
VGET (&VARLIST) SHARED

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK (’VGET ’,VARLIST,’SHARED ’);

In a CLIST, obtain the current value for the dynamic system variable LHHMMSS:
ISPEXEC VGET (LHHMMSS) SYMDEF

In a REXX exec, obtain the current values for the static symbols SYSNAME and
SYSR1:
’VGET (SYSNAME SYSR1) SYMDEF’

In a REXX exec, obtain the current values for the dynamic symbols HHMMSS and
LHHMMSS. Also obtain the current value for the static symbol SYSCLONE and
store it in a variable named cl:
’VGET (cl hhmmss lhhmmss) SYMDEF SYMNAMES(sysclone)’

VIEW—view a data set
The VIEW service enables you to manipulate data without the risk of saving
changes. As in the EDIT service, data can be manipulated through the use of
familiar line and primary commands.

The VIEW service functions exactly like the EDIT service, with these exceptions:
v You must use the REPLACE or CREATE primary command to save data. The

SAVE primary command is disabled when using the VIEW service.
v If you are AUTOSAVE mode and enter the END primary command after you

have altered the file being viewed, the View Warning pop-up panel gives you
the option of exiting with no changes saved (by entering the END command
again), or using the CREATE or REPLACE command to save your changes. If
you have made no changes to the data set or member being viewed, the VIEW
service terminates as it would in EDIT mode.

The VIEW service provides an interface to the VIEW function and bypasses the
display of the View Entry Panel. The VIEW interface allows you to use a

VGET

Chapter 2. Description of the ISPF services 313

customized panel for displaying data (use panel ISREFR01 as a model when
creating your panel), and lets you specify the initial macro and the edit profile to
be used.

You can use VIEW to view any ISPF library, concatenation of ISPF libraries, or data
set that can be allocated by using the LMINIT service. You can use the service
recursively, either through nested dialogs or by entering a VIEW command while
viewing a member or data set. In addition, the EDIT and BROWSE commands can
be nested within a VIEW session until you run out of storage.

Note:

1. Dialogs that invoke the VIEW service may invoke the EDREC service first to
start view recovery, because the VIEW service does not do view recovery.

2. The VIEW service might alter the DISPLAY environment. Do not expect the
DISPLAY environment that existed before invoking the VIEW service to remain
unchanged.

3. The VIEW service cannot be issued by a PL/I main program that also uses
subtasking.

4. When you do an EDREC QUERY, ZEDMODE is set to V for View or E for Edit.

When VIEW is operating in recovery mode, a record of your interactions is
automatically recorded in a PDF-controlled data set. Following a system failure,
you can use the record to recover the data you were viewing.

A dialog using VIEW can place data into the ZEDUSER dialog variable in the
shared pool. The data in ZEDUSER is saved in the edit recovery table as an
extension variable when the recovery data set is initialized. This is done if
RECOVERY is ON when first entering view or after using the CREATE or
REPLACE command. The data is then made available in dialog variable ZEDUSER
at the time view recovery is processed.

You can use VIEW to display workstation files on the host and host data sets on
the workstation. The ZWSWFN variable is the workstation working file name that
is generated by ISPF. The variable ZLRECL is the LRECL of the host data set being
edited. Both can be used in the workstation VIEW parameters field. ISPF interprets
any string that starts with an ampersand (&) as a system variable and evaluates it
before passing to the workstation command. Strings that do not start with an
ampersand are passed as is.

Batch commands can also be specified in the Workstation Browse/View fields,
besides the View program name. If you have a file transferred to the workstation
that you wish to do some work on besides View, you can do that in the beginning
of the batch file before invoking the editor. Depending on the parameters passed to
the batch command, you can also have conditional logic to perform other functions
as well.

Command invocation format

�� ISPEXEC VIEW DATASET(dsname)
VOLUME(serial)

�

�
PASSWORD(pswd-value) PANEL(panel-name) MACRO(macro-name)

�

VIEW

314 z/OS V2R2 ISPF Services Guide

�
PROFILE(profile-name) FORMAT(format-name) NO

MIXED(YES)

�

�
YES

CONFIRM(NO)
NO

WS(YES)
YES

CHGWARN(NO)

�

�
PARM(parm-var) ASCII

UTF8
LINECMDS(tabname)

��

or

�� ISPEXEC VIEW DATAID(data-id) �

�
MEMBER(member-name)

GEN(generation)
PANEL(panel-name)

�

�
MACRO(macro-name) PROFILE(profile-name) FORMAT(format-name)

�

�
NO

MIXED(YES)
YES

CONFIRM(NO)
NO

WS(YES)

�

�
YES

CHGWARN(NO)
PARM(parm-var) ASCII

UTF8
LINECMDS(tabname)

��

or

�� ISPEXEC VIEW WSFN(ws-filename)
PANEL(panel-name)

�

�
MACRO(macro-name) PROFILE(profile-name) FORMAT(format-name)

�

�
NO

MIXED(YES)
YES

CONFIRM(NO)
NO

WS(YES)

�

�
YES

CHGWARN(NO)
PARM(parm-var)

��

or

�� ISPEXEC VIEW FILE(file-var)
PANEL(panel-name)

�

�
MACRO(macro-name) PROFILE(profile-name) FORMAT(format-name)

�

VIEW

Chapter 2. Description of the ISPF services 315

|

�
NO

MIXED(YES)
YES

CONFIRM(NO)
NO

WS(YES)

�

�
YES

CHGWARN(NO)
PARM(parm-var) ASCII

UTF8
LINECMDS(tabname)

��

Call invocation format

�� CALL ISPLINK ('VIEW����' ,
dsname

, serial
'�'

, pswd-value
'�'

�

� , panel-name
'�'

, macro-name
'�'

, profile-name
'�'

,
data-id

�

� , member-name
'�'

, format-name
'�'

'NO������'
, '�'

'YES�����'

'YES�����'
, '�'

'NO������'
, �

�
ws-filename-buffer-name

'YES'
, '�'

'NO'
, '�'

'YES'
'NO'

, parm-var
'�'

, �

�
file-var

, 'ASCII'
'UTF8'
'�'

, tabname ,);
'�' generation

��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
dsname

The data set name, in TSO syntax, of the data set to be viewed. This is
equivalent to the “other” data set name on the View Entry Panel. You can
specify a fully qualified data set name enclosed in apostrophes (’ ’). If the
apostrophes are omitted, the TSO data set prefix from the user's TSO profile is
automatically attached to the data set name. The maximum length of this
parameter is 56 characters.

For ISPF libraries and MVS partitioned data sets, you can specify a member
name or a pattern enclosed in parentheses. If you do not specify a member
name or if you specify a member pattern as part of the dsname specification
when the DATASET keyword is used, a member selection list for the ISPF
library, concatenation of libraries, or MVS partitioned data set is displayed. For
more information about patterns and pattern matching, see the z/OS V2R2 ISPF
User's Guide Vol I.

VIEW

316 z/OS V2R2 ISPF Services Guide

|

Note: You can also specify a VSAM data set name. If a VSAM data set is
specified, ISPF checks the ISPF configuration table to see if VSAM support is
enabled. If it is, the specified tool is invoked. If VSAM support is not enabled,
an error message is displayed.

serial
The serial number of the volume on which the data set resides. If you omit this
parameter or code it as blank, the system catalog is searched for the data set
name. The maximum length of this parameter is 6 characters.

pswd-value
The password if the data set has MVS password protection. Do not specify a
password for RACF-protected data sets.

panel-name
The name of a customized view panel, created by you, to be used when
displaying the data. See z/OS V2R2 ISPF Planning and Customizing for
information about developing a customized panel.

macro-name
The name of the first edit macro to be executed after the data is read, but
before it is displayed. See z/OS V2R2 ISPF Edit and Edit Macros for more
information.

profile-name
The name of the edit profile to be used. If you do not specify a profile name,
the profile name defaults to the ISPF library type or last qualifier of the
“other” TSO data set name. See z/OS V2R2 ISPF Edit and Edit Macros for more
information.

format-name
The name of the format to be used to reformat the data. The format-name
parameter is provided to support the IBM 5550 terminal using the Double-Byte
Character Set (DBCS).

YES|NO
For the MIXED parameter, if YES is specified, the VIEW service treats the data
as mixed-mode DBCS data. If NO is specified, the data is treated as EBCDIC
(single-byte) data. This parameter is provided to support the IBM 5550
terminal using the Double-Byte Character Set (DBCS).

YES|NO
For the CONFIRM parameter, if you specify YES and then attempt to
CANCEL, MOVE, or REPLACE data while in VIEW mode, ISPF displays a
pop-up panel that requires you to confirm the action. Because members or data
sets that are canceled, moved, or replaced are deleted, CONFIRM acts as a
safeguard against accidental data loss. If you want to terminate the view
session without saving the data, press ENTER. If you made a mistake and
want to return to the view session, enter the END command. If you specify
NO as the CONFIRM value, you will not be required to confirm a CANCEL,
MOVE, or REPLACE.

YES|NO
For the WS keyword, if you specify YES the VIEW service enables you to view
the host data set or workstation file on the workstation using the workstation
tool configured in the ISPF tool integrator. For more information, see the
information about Workstation Tool Integration in the Settings (Option 0) topic
of the z/OS V2R2 ISPF User's Guide Vol II. If you specify NO as the WS value,
the VIEW service views the host data set or workstation file on the host.

VIEW

Chapter 2. Description of the ISPF services 317

YES|NO
For the CHGWARN keyword, if you specify YES the VIEW service gives a
warning when the first data change is made, indicating that data cannot be
saved in View. If you specify NO, no data change warning is given.

data-id
The data ID that was returned from the LMINIT service. The maximum length
of this parameter is 8 characters.

You can use the LMINIT service in either of two ways before invoking the
VIEW service:
v You can use LMINIT to allocate existing data sets by specifying a data set

name or ISPF library qualifiers. LMINIT returns a data ID as output. This
data ID, rather than a data set name, is then passed as input to the VIEW
service.

v The dialog can allocate its own data sets by using the TSO ALLOCATE
command or MVS dynamic allocation, and then passing the ddname to
LMINIT. Again, a data ID is returned as output from LMINIT and
subsequently passed to the VIEW service. This procedure is called the
ddname interface to VIEW. It is particularly useful for viewing VIO data sets,
which cannot be accessed by data set name because they are not cataloged.

member-name
A member of an ISPF library or MVS partitioned data set, or a pattern. If you
do not specify a member name when the MEMBER keyword or call invocation
is used, or if a pattern is specified, a member selection list for the ISPF library,
concatenation of libraries, or MVS partitioned data set is displayed. For more
information about patterns and pattern matching, see the z/OS V2R2 ISPF
User's Guide Vol I.

generation
A fullword fixed integer containing the relative or absolute generation of the
member to be viewed. If the value is negative, it is a relative generation. If the
value is positive, it is an absolute generation that the caller has determined to
be valid. The value 0 (zero) indicates the current generation and is equivalent
to not specifying the parameter. This parameter is valid only when the
specified member is in a PDSE version 2 data set that is configured for
member generations.

ws-filename-buffer-name
Specifies the name of a variable containing the path and the file name (in the
syntax of the workstation's operating system) of the workstation file to be
edited. The maximum length of the path and the workstation file name within
this variable is 256. If the path is omitted, the working directory configured in
the ISPF tool integrator will be inserted in front of the workstation file name to
resolve the relative path. See the information about Workstation Tool
Integration in the Settings (Option 0) topic of the z/OS V2R2 ISPF User's Guide
Vol II.

ASCII|UTF8
This parameter can be specified when invoking VIEW to view data encoded in
ASCII (or UTF-8) and the file is not tagged with a CCSID of 819 (or 1208).

When ASCII is specified or the file is tagged with CCSID 819, the editor
renders the ASCII data readable by converting it to the CCSID of the terminal.
Also, if set for a z/OS UNIX file, the editor breaks up the data into records
using the ASCII linefeed character (X'0A') and the ASCII carriage return
character (X'0D') as the record delimiter. For z/OS UNIX files, the linefeed and
carriage return characters are removed from the data loaded into the editor but

VIEW

318 z/OS V2R2 ISPF Services Guide

|
|
|
|
|
|
|
|

written back to the file when the data is saved. This option should not be used
when viewing workstation files which are converted to EBCDIC when they are
loaded from the workstation.

When UTF8 is specified, or the file is tagged with CCSID 1208, the equivalent
actions happen, except for UTF-8 instead of ASCII.

tabname
The name of a user line command table to be provided by the service caller.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

parm-var
The name of an ISPF variable that contains parameters which are to be passed
to the initial macro specified by macro-name. The variable value must not
exceed 200 bytes in length. If no macro name is specified, parm-var must be
blank or not specified.

file-var
The name of an ISPF variable containing the path name for a z/OS UNIX
regular file or directory. If the path name is for a directory, a directory selection
list is displayed.

Return codes
These return codes are possible:

0 Normal completion. Browse was substituted for VIEW if insufficient
storage was available to read in the requested data.

Note: Data can only be saved through the CREATE or REPLACE primary
commands.

10 Member or generation (if specified) not found.

12 VIEW has been disabled through the ISPF configuration table.

14 Member, sequential data set, or z/OS UNIX file in use.

16 Either:
v No members matched the specified pattern
v No members in the partitioned data set.

18 A VSAM data set was specified but the ISPF Configuration Table does not
allow VSAM processing.

20 Severe error; unable to continue.

Examples
See:
v “Example 1:” on page 320
v “Example 2:” on page 320
v “Example 3:” on page 320

VIEW

Chapter 2. Description of the ISPF services 319

||

Example 1:
This example invokes the VIEW service for TELOUT, a member of the
ISPFPROJ.FTOUTPUT data set, using the viewer command configured on the
workstation.

Command invocation:
ISPEXEC VIEW DATASET(’ISPFPROJ.FTOUTPUT(TELOUT)’) WS(YES)

OR

ISPEXEC LMINIT DATAID(EDT) DATASET(’ISPFPROJ.FTOUTPUT’)
ISPEXEC VIEW DATAID(&EDT) MEMBER(TELOUT) WS(YES)

Call invocation:
CALL ISPLINK (’VIEW’,’ISPFPROJ.FTOUTPUT(TELOUT)’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,

’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’YES’);

OR

Set the program variable BUFFER to contain:
BUFFER = ’VIEW DATASET(’ISPFPROJ.FTOUTPUT(TELOUT)’’) WS(YES)’;

Set the program variable BUFFLN to the length of the variable BUFFER. Issue the
command:
CALL ISPEXEC (BUFFLN, BUFFER);

Example 2:
This example invokes the VIEW service for a workstation file, c:\config.sys, using
the ISPF editor on the host.

Command invocation: Set the command variable WSFNNAME to contain:
WSFNNAME=’c:\config.sys’

ISPEXEC VIEW WSFN(WSFNNAME) WS(NO)

Call invocation: Set the program variable to contain:
WSFNNAME=’c:\config.sys’;

CALL ISPLINK(’VIEW’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,
’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ WFSNNAME’,’NO’);

OR

Set the program variable WSFNNAME to contain:
WSFNNAME=’c:\config.sys’;

Set the program variable BUFFER to contain:
BUFFER=’VIEW WSFN(WSFNNAME) WS(NO)’;

Set the program variable BUFFLEN to the length of the variable BUFFER. Enter the
command:
CALL ISPEXEC(BUFFLEN,BUFFER);

Example 3:
This example invokes the VIEW service for z/OS UNIX file /u/user1/filea.

VIEW

320 z/OS V2R2 ISPF Services Guide

Command invocation:
FILEVAR=’/u/user1/filea’
ISPEXEC VIEW FILE(FILEVAR)

Call invocation:
FILEVAR=’/u/user1/filea’;
CALL ISPLINK(’VIEW’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,

’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’FILEVAR ’);

VIIF—View interface
The View Interface (VIIF) service provides view functions for data accessed
through dialog-supplied I/O routines. The invoking dialog must perform all
environment-dependent functions such as file allocation, opening, reading, closing,
and freeing. The dialog is also responsible for any Enqueue/Dequeue serialization
that is required. With the dialog providing the I/O routines, VIIF allows you to:
v View data other than partitioned data sets or sequential files such as subsystem

data, and in-storage data.
v Do preprocessing and post-processing of the data being viewed.

The invoking dialog must provide addresses to routines that:
v Read the data sequentially from beginning to end, returning to View one record

on each invocation.
v Perform processing for the MOVE, COPY, and VIEW primary commands (and

CREATE and REPLACE commands when a write routine is specified). If this
routine is not specified, ISPF processes these commands.

v Write the records selected for the CREATE and REPLACE primary commands,
accepting one record from Edit on each invocation.

These addresses must be 31-bit addresses, and the routines must have an
addressing mode (AMODE) of 31.

When a View session is operating in recovery mode, a record of your interactions
is automatically recorded in a PDF-controlled data set. Following a system failure,
you can use the record to recover the data you were viewing.

Note: Dialogs that invoke the VIIF service may invoke the EDIREC service first to
start view recovery. The VIIF service itself does not do view recovery.

A dialog using VIIF can place data into the ZEIUSER dialog variable in the shared
pool. When the system initializes the recovery data set, the system also saves the
data in ZEIUSER in the Edit recovery table as an extension variable. This is done if
RECOVERY is ON when first entering View or after you use the CREATE or
REPLACE commands. This data is then made available in dialog variable ZEIUSER
at the time view recovery is processed.

Command invocation format
You cannot use command procedures to invoke this service.

Call invocation format
The format for invoking VIIF can be different depending on whether you want to
process a pending view recovery. If you do not want to process a pending view
recovery, the format is:

VIEW

Chapter 2. Description of the ISPF services 321

�� CALL ISPLINK ('VIIF����' , data-name
'�'

,profile-name ,rec-format �

� ,rec-len ,read-routine , cmd-routine
'�'

, dialog-data
'�'

�

� , edit-len
'�'

, panel-name
'�'

, macro-name
'�'

, format-name
'�'

�

�
'NO������'

, '�'
'YES�����'

'NO������'
, '�'

'YES�����'
, parm-var

'�'
, write-routine

'�'
�

�
'YES�����'

, '�'
'NO������'

, tabname
'�'

); ��

You must use the VIIF service to recover data viewed in a previous VIIF session.
You must invoke the EDIREC service first to see if a recovery is pending. If you
want to process a pending recovery, use this format for VIIF, specifying YES for the
recovery-request parameter:

�� CALL ISPLINK ('VIIF����' , data-name
'�'

,'�' , rec-format
'�'

, �

� rec-len
'�'

,read-routine , cmd-routine
'�'

, dialog-data
'�'

,'�' �

� ,'�' ,'�' ,'�' ,'�' ,'YES�����' ,'�' , write-routine
'�'

,'�' �

� , tabname
'�'

); ��

Parameters
data-name

This parameter allows you to specify a data name for the source data to be
viewed. This name appears in the title line of the default View panel. It is also
the target data name for an edit recovery table entry when edit recovery is
active. This name must not have any embedded blanks, and its maximum
length is 54 characters. This name is stored in ZDSNT in the function pool.

profile-name
The name of the edit profile to be used. This parameter is required when
recovery-request is NO (or is not specified); otherwise, it is not allowed.

rec-format
The record format: F - fixed, V - variable. This parameter is required when
recovery-request is NO (or is not specified); otherwise, it is optional, but it
must be the same record format that was specified when recovery was initiated
for the data.

rec-len
The record length, in bytes. It must be a positive numeric value between 10

VIIF

322 z/OS V2R2 ISPF Services Guide

|||

and 32 760, inclusive. For variable record format, this is the maximum record
length. This parameter is required when recovery-request is NO (or is not
specified); otherwise, it is optional, but it must be the same record length that
was specified when recovery was initiated for the data.

read-routine
A fullword address indicating the entry point of a dialog-supplied read routine
(required). It is recommended that the high-order bit of this value be set ON.
See “Read routine” on page 325 for more information about this parameter.

cmd-routine
A fullword address indicating the entry point of a dialog- supplied routine that
processes the MOVE, COPY, and VIEW primary commands. This routine also
processes the CREATE and REPLACE primary commands when the address of
a write-routine is specified as a parameter on the VIIF call. It is recommended
that the high-order bit of this value be set ON. See “Command routine” on
page 325 for more information about this parameter. If this parameter is not
specified, ISPF processes these commands.

dialog-data
A fullword address indicating the beginning of a dialog data area. This address
is passed to the dialog-supplied routines. If no address is supplied, zeros are
passed to the dialog routines. This data area provides a communication area
for the dialog.

edit-len
The length, in bytes, of the data to be displayed for viewing. This parameter
indicates that the data records should be considered to have a length shorter
than rec-len during viewing. Thus, the dialog may include data in the record
that is not accessible for viewing.

Edit-len must be a numeric value between 10 and 32 760, inclusive, and must
be less than or equal to parameter rec-len. Rec-len is the default. If the edit-len
parameter is specified, the bytes from (edit-len + 1) to rec-len are not
displayed. That means the inaccessible record data is at the end of the record.

The edit-len parameter is optional when recovery-request is NO (or is not
specified); otherwise, it is not allowed. The edit-len parameter is not allowed
when format-name is specified.

panel-name
The name of the panel to use for displaying the data. This parameter is
optional when recovery-request is NO (or is not specified); otherwise, it is not
allowed. The default is the standard View data display panel. See z/OS V2R2
ISPF Planning and Customizing for information about developing a customized
panel.

macro-name
The name of the initial macro to be executed. This parameter is optional when
recovery-request is NO (or is not specified); otherwise, it is not allowed. The
default is no initial macro. See z/OS V2R2 ISPF Edit and Edit Macros for more
information on macros.

format-name
The name of the format to be used to reformat the data. This parameter is
optional when recovery-request is NO (or is not specified); otherwise, it is not
allowed. The default is no format. This parameter is provided to support the
IBM 5550 terminal using the Double-Byte Character Set (DBCS). This
parameter is not allowed when the edit-len parameter is specified.

VIIF

Chapter 2. Description of the ISPF services 323

|

|
|

YES|NO (mixed-mode)
Specifies whether the data is treated as mixed-mode DBCS data. This
parameter is optional when recovery-request is NO (or is not specified);
otherwise, it is not allowed. If YES is specified, the VIIF service treats the data
as mixed-mode DBCS data. If NO (the default) is specified, the data is treated
as EBCDIC (single-byte) data. This parameter is provided to support the IBM
5550 terminal using the Double-Byte Character Set (DBCS).

YES|NO (recovery-request)
Specifies whether to process a pending view recovery that was being viewed
with the VIIF service when a system failure occurred. If YES is specified, the
edit recovery should proceed. This function is similar to the EDREC service
with the PROCESS option. If YES is specified to process the view recovery, you
must specify the read routine and write routine, but you must not specify
profile name, edit-len, panel-name, macro-name, format-name and
mixed-mode. If NO is specified, no edit recovery is processed; VIIF views the
specified data.

parm-var
The name of an ISPF variable that contains parameters which are to be passed
to the initial macro specified by macro-name. The variable value must not
exceed 200 bytes in length. If no macro name is specified, parm-var must be
blank or not specified.

write-routine
A fullword address indicating the entry point of a dialog- supplied write
routine used to handle the writing of records for the CREATE and REPLACE
primary commands. It is recommended that the high-order bit of this value be
set ON. If a write-routine is not supplied, ISPF handles the writing of records
for the CREATE and REPLACE primary commands. See “Write routine” on
page 326 for more information about this parameter.

NO|YES (change warning)
Specifies whether a warning message is issued on the first change of data. If
you specify YES, the VIIF service gives a warning when the first data change is
made, indicating that data cannot be saved in View. If you specify NO, no data
change warning is given.

tabname
The name of a user line command table to be used for the view session. The
value must be 8 characters, blank padded.

Dialog-supplied routines
All dialog-supplied routines are invoked using standard linkage. All addresses
must be 31-bit addresses, and the addressing mode (AMODE) of the routines must
be AMODE=31.

A VIIF read or write routine must have an assembler interface to be used in a call
to VIIF.

The dialog-supplied routines are called directly by ISPF at the same task level
(TCB) that displays the ISPF screens. If you need to ensure that your program runs
at the same task level as the routines, use the SELECT PGM() service to start your
program. This may be a factor if your program expects to create or share data
spaces or other task-specific resources between the main program and the read,
write, or command routines.

VIIF

324 z/OS V2R2 ISPF Services Guide

|
|

|
|
|

Note: The dialog-supplied routines can be written in languages that use the
Language Environment runtime environment. However, a mixture of Language
Environment-conforming main dialog code and service routine code is not
supported. Dialogs and service routines must either all be Language
Environment-conforming or all be Language Environment-nonconforming.

Read routine
VIIF calls the read routine repeatedly to obtain all of the data records to be viewed
at the beginning of the View session. This routine is also called to obtain data
records for the MOVE and COPY commands when the dialog is handling the
processing for these commands. The dialog-supplied read routine is invoked with
these parameters:
v Fullword pointer to record data read (output from read routine)
v Fullword fixed binary data length of record read if rec-format is ‘V’
v Fullword fixed binary request code. Request settings are as follows:

0 Read next record
1 First read request

v Fullword dialog data area address.

Command routine
The dialog-supplied command routine, when specified, processes the MOVE,
COPY, and VIEW primary commands. If the address of a write-routine is specified
as a parameter on the VIIF call, the command routine also processes the CREATE
and REPLACE primary commands. The command routine is invoked with these
parameters:
v Fullword fixed binary function code word. Decimal values of function settings

are as follows:

1n Move
2n Copy
3n Create
4n Replace
5n Recursive view

where n is 0 (beginning of function), 1 (successful completion), or 2
(unsuccessful completion). This n value will always be 0 for a recursive View
function; that is, the View request code will be 50.

v Fullword dialog data area address.

To access parameters that can follow the command, the command routine must
access the ZCMD dialog variable from the SHARED variable pool.

For a MOVE, COPY, CREATE, or REPLACE, the command routine initiates the
processing for the requested function. When the return code from the command
routine is zero, VIIF calls the read or write routine to transfer the data. After the
read or write is completed, the command routine is called once more to handle any
termination processing that may be required for the requested function. For
example, the MOVE function would need to delete the data that was moved.

For the VIEW command, the command routine must perform all processing
required to effect the desired results for the purposes of the dialog. For example,
the dialog can consider the VIEW command to be an invalid command. The
command routine is called only once for each VIEW command.

VIIF

Chapter 2. Description of the ISPF services 325

Write routine
VIIF calls the write routine to write data records for the CREATE and REPLACE
commands when the dialog is handling the processing for these commands. The
write routine is called repeatedly to write the data records selected for the CREATE
or REPLACE command. Flags are passed to the write routine to indicate the source
and change status for each record.

The dialog-supplied write routine is invoked with these parameters:
v Fullword pointer to record data to be written.
v Fullword fixed binary data length of record to be written if rec-format is V. This

is the length of the nonblank portion of the record. The entire record with
trailing blanks up to the maximum rec-len is available.

v Fullword of source and change bits for the record. The bit representation is as
follows:
Source bits:

1 = original record
2 = internal move (Move line command)
3 = internal copy/repeat (Copy/Repeat line commands)
4 = external move (MOVE primary command)
5 = external copy (COPY primary command)
6 = text inserted (TE line command)
7 = typed inserted (Insert line command)

Change bits:
8 = record changed (global bit; set for all changes)
9 = data overtyped
10 = change command (CHANGE primary command)

or overlay change (Overlay line command)
11 = columns shifted ((,((,),)) line commands)
12 = data shifted (<,<<,>,>> line commands)
13 = text change (TE, TF, TS line commands)
14 = record renumbered
15-32 = unused

Multiple bits may be set on, indicating that more than one modification has
occurred for the record. For example, a data record that is inserted by using the
INSERT line command and is later included in a text flow operation would have
bits 7 (typed inserted), 8 (change), 9 (data overtyped) and 13 (text changed)
turned on.
Records read in for the initial display are flagged as original records. Whenever
there is hidden data, the inaccessible portion of inserted records contains blanks.
Records are copied in their entirety; that is, including both the visible and
hidden portions of the data. Deleted records are not presented to the write
routine.

v Fullword fixed binary request code. Request settings are as follows:

0 Write the next record.

1 First write request.

2 Last write request (final data record provided).

3 First and last write request (only one data record).
v Fullword dialog data area address.

VIIF

326 z/OS V2R2 ISPF Services Guide

Return codes
When a dialog routine terminates with a return code (12 or higher or an
unexpected return code), the dialog can issue a SETMSG to generate a message on
the next panel display. If the dialog does not set a message, the VIIF service will
issue a default message.

Read routine
0 Normal completion.

8 End of data records (no data record returned).

16 Read error. If a read error is encountered when the system builds the initial
view display, the VIIF service terminates with a return code of 20.
Otherwise, the view data is redisplayed.

20 Severe error. (The VIIF service terminates immediately with a return code
of 20.)

Command routine return codes
0 Normal completion.

4 ISPF should process the requested function.

12 Command deferred; retain the command on the Command line. View data
is redisplayed.

20 Severe error. (The VIIF service terminates immediately with a return code
of 20.)

VIIF service return codes
0 Normal completion, data not saved.

12 View has been disabled through the configuration table.

16 Unexpected return code received from a dialog-supplied routine. When an
unexpected return code is received, the VIIF service terminates
immediately with a return code of 16.

20 Severe error; unable to continue.

After the View session has been terminated, control is returned to the invoking
dialog with a return code indicating the completion status.

Write routine return codes
0 Normal completion.

16 Output error, return to View mode.

20 Severe error. (The VIIF service terminates immediately with a return code
of 20.)

After the View session has been terminated, control is returned to the invoking
dialog with a return code indicating the completion status.

Example
This example invokes the VIIF service to view data called EDIFDSN, which has a
fixed-record format with a record length of 80 characters. An edit profile
(EDIFPROF), read routine (RDRTN) and command routine (CMDRTN) are
supplied, as is a dialog data area (MYDATA).

VIIF

Chapter 2. Description of the ISPF services 327

Call invocation
CALL ISPLINK (’VIIF ’,’EDIFDSN ’,’EDIFPROF ’,’F ’,80,

RDRTN,CMDRTN,MYDATA);

For a more complete example of using VIIF, including dialog-supplied I/O
routines and source code, see the z/OS V2R2 ISPF Dialog Developer's Guide and
Reference.

VMASK—mask and edit processing
The VMASK service associates an edit mask with a dialog variable defined with
VDEFINE. The edit mask is a pattern used to validate input into that variable. The
mask characters are stripped from the data before it is put into the function pool,
or before the data is stored in a table from a TBDISPL. When the masked variable
is displayed on a panel, stored in the shared or profile pool, or accessed by
VCOPY, the output string contains the mask characters. When specifying the
length to receive these variables on the VCOPY call, the length should be as long
as the mask, not the defined variable. The length of the mask should also be
considered when defining the field in which a masked variable is displayed.

The mask is only associated with the definition of the variable that was active
when the VMASK was issued and cannot be used with implicit variables.

For example:
VDEFINE VAR1 123 A
VMASK VAR1 (999) A
VDEFINE VAR1 123 B
VCOPY VAR1 123 B
VDELETE VAR1 B
VCOPY VAR1 (123) A

The mask is associated with the A definition of VAR1, not the B definition.

When using a masked variable on a panel, you must issue a VEDIT in the
processing section of the panel for that masked variable for the data to be
accessible in the function pool. You must issue the VEDIT statement before any
other panel statements that reference variables, (such as VPUT or VER). If you
don't, the values in the pool will be unpredictable. The VEDIT statement indicates
to ISPF that the data entered into the masked variable field should be verified and
the mask stripped out. If you don't issue the VEDIT for each masked variable on
the panel, the resulting data in the pool will be unpredictable.

The VMASK service is supported for programming languages. The variable must
be VDEFINEd with FIXED, PACK, or CHAR formats.

VMASK call invocation
CALL ISPLINK (’VMASK ’,name-list{,’FORMAT ’{,’IDATE ’} }

{ {,’STDDATE ’} }
{ {,’ITIME ’} }
{ {,’STDTIME ’} }
{ {,’JDATE ’} }
{ {,’JSTD ’}) }
{,’USER ’,’mask’,masklen)}

VIIF

328 z/OS V2R2 ISPF Services Guide

Parameters
name-list

Specifies the names of one or more dialog variables whose values are to be
associated with a mask pattern.

FORMAT|USER
Identifies the type of mask to be associated with the dialog variable. FORMAT
indicates that the mask is one of the predefined mask formats. USER indicates
the mask will be user defined.

If FORMAT is specified, these keywords are predefined mask patterns that
ISPF validates.

IDATE
This specifies a data type for which the format represents a date
expressed in a 2-digit year (YY), month (MM), and day (DD).

The IDATE internal format used by the dialog variable contains 6
digits representing YYMMDD. The IDATE display format contains 8
characters, including the national language date delimiter character.
For the U.S., the format is YY/MM/DD. For input only, ISPF ensures
the resulting IDATE internal format value is a valid date. It ensures
that the internal value for YY is 00-99, for MM is 01-12 and for DD is
01-31. Validation is also done to check the date for months with fewer
than 31 days and for leap years.

STDDATE
This specifies a data type for which the format represents a date
expressed in a 4-digit year (YYYY), month (MM) and day (DD).

The STDDATE internal format used by the dialog variable contains 8
digits representing YYYYMMDD. The STDDATE display format
contains 10 characters including the national language date delimiter.
For the U.S., the format is YYYY/MM/DD. For input only, ISPF
ensures the resulting STDDATE internal value is a valid date. It
ensures that the internal value for YYYY is 0000-9999, for MM is 01-12
and for DD is 01-31. Validation is also done to check the date for
months with fewer than 31 days and for leap years.

ITIME
This specifies a data type for which the format represents time
expressed in hours (HH) and minutes (MM).

The ITIME internal format used by the dialog variable contains 4 digits
representing HHMM. The ITIME display format contains 5 characters
including the national language time delimiter. For the U.S., the format
is HH:MM. Hours are specified using the 24-hour clock. For input only,
ISPF ensures the resulting ITIME internal value is a valid time. It
ensures that the internal value for HH is 00-23 and for MM is 00-59.

STDTIME
This specifies a data type for which the format represents time
expressed in hours (HH), minutes (MM) and seconds (SS).

The STDTIME internal format used by the dialog variable contains 6
digits representing HHMMSS. The STDTIME display format contains 8
characters including the national language time delimiter. For the U.S.,
the format is HH:MM:SS. Hours are specified using the 24-hour clock.

VMASK

Chapter 2. Description of the ISPF services 329

For input only, ISPF ensures the resulting STDTIME internal value is a
valid time. It ensures that the internal value for HH is 00-23, for MM is
00-59 and for SS is 00-59.

JDATE
This specifies a data type for which the format represents a date
expressed in a 2-digit year (YY) and day of the year (DDD).

The JDATE internal format used by the dialog variable contains 5
digits representing YYDDD. The JDATE display format contains 6
characters in the format YY.DDD. For input only, ISPF ensures the
resulting JDATE internal value is a valid date. It ensures that the
internal value for YY is 00-99 and for DDD is 365. Validation is also
done to check for leap years with 366 days.

JSTD This specifies a data type for which the format represents a date
expressed in a 4-digit year (YYYY) and day of the year (DDD).

The JSTD internal format used by the dialog variable contains 7 digits
representing YYYYDDD. The JSTD display format contains 8 characters
in the format is YYYY.DDD. For input only, ISPF ensures the resulting
JSTD internal value is a valid date. It ensures that the internal value for
YYYY is 0000-9999 and for DDD is 365. Validation is also done to
check for leap years.

When a user enters a value for a variable with a type of either IDATE or
STDDATE, it must be entered using the national language date format. It is a
good idea to display an explanation of the expected format to the user so that
the value is entered properly. ISPF verifies that the value entered is a valid
date, and if no errors are found, the national language date format is converted
to the internal format before the value is stored in the variable pool.

If USER is specified, these parameters must be defined:

mask Identifies the mask pattern associated with the dialog variable.

A mask pattern can consist of 20 characters. These are valid mask
symbols:

A Any alphabetic character (A-Z, a-z)

B A blank space

9 Any numeric character (0-9)

H Any hexadecimal digit (0-9, A-F, a-f)

N Any numeric or alphabetic character (0-9, A-Z, a-z)

V Location of the assumed decimal point

S The numeric data is signed

X Any allowable characters from the character set of the
computer

Special characters
() - / , .

The data represented by the B, V and special character symbols will be
stripped before the data is put into the pool. The specified mask must
contain at least one of the symbols A, 9, H, N, or X.

The S symbol must be in the first position to be accepted.

VMASK

330 z/OS V2R2 ISPF Services Guide

masklen
Specifies the length of the mask in bytes. The maximum length
of the mask is 20. This parameter must be specified in a
fullword fixed binary integer.

Return codes
These return codes are possible:

0 Normal completion

8 Variable not found

20 Severe error.

Example
In this example, a character variable (CVAR) is defined with a user-defined mask
for a phone number. A fixed variable (FVAR) with a time format is specified.
DECLARE

FVAR FIXED BIN(31),
CVAR CHAR(10),
LENCHR FIXED BIN(31),
LENFIX FIXED BIN(31),
LENMSK FIXED BIN(31);

LENCHR = 10;
LENFIX = 4;
CALL ISPLINK(’VDEFINE ’,’(CVAR)’,CVAR,’CHAR ’,LENCHR);
CALL ISPLINK(’VDEFINE ’,’(FVAR)’,FVAR,’FIXED ’,LENFIX);
LENMSK = 13;
CALL ISPLINK(’VMASK ’,’(CVAR)’,’USER ’,’(999)999-9999’,LENMSK);
CALL ISPLINK(’VMASK ’,’(FVAR)’,’FORMAT ’,’ITIME ’);

The VEDIT statement
Use the VEDIT statement to verify mask data.

VPUT—update variables in the shared or profile pool
The VPUT service copies values from dialog variables in the function pool to the
shared or application profile pool. If a variable of the same name already exists in
the shared or the profile pool, it is updated. If it does not exist in the shared or
profile pool, it is created in the pool specified by the parameter on the VPUT
service request, and then it is updated.

Command invocation format

�� ISPEXEC VPUT name-list
ASIS

SHARED
PROFILE

��

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

VMASK

Chapter 2. Description of the ISPF services 331

�� CALL ISPLINK ('VPUT����' , name-list
'ASIS����'

, '�'
'SHARED��'
'PROFILE�'

); ��

Parameters
name-list

Specifies the names of one or more dialog variables whose values are to be
copied from the function pool to the shared or profile pool. See “Invoking the
ISPF services” on page 2 for specification of name lists.

ASIS
Specifies that the variables are to be copied to the pool in which they already
exist or that they are to be copied to the shared pool, if they are new. If the
variables exist in both the shared and profile pools, they are copied to the
shared pool only.

SHARED
Specifies that the variables are to be copied to the shared pool.

PROFILE
Specifies that the variables are to be copied to the application profile pool. Any
shared pool variables of the same names are deleted.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion.

8 Variable not found.

16 Truncation occurred while copying variables to the application profile pool.

20 Severe error.

Example
In a CLIST, write variables, the names of which are listed in the variable
VPUTLIST, from the function pool to the shared pool.
ISPEXEC VPUT (&VPUTLIST) SHARED

In a PL/I program, write variables, the names of which are listed in program
variable VPUTLIST, from the function pool to the shared pool. The variable
VPUTLIST has been made available to ISPF by a previous VDEFINE operation. Set
the program variable BUFFER to contain:
VPUT (&VPUTLIST) SHARED

Set program variable BUFLEN to the length of the variable BUFFER. Enter the
command:
CALL ISPEXEC (BUFLEN, BUFFER);

VPUT

332 z/OS V2R2 ISPF Services Guide

or alternately
CALL ISPLINK (’VPUT ’,VPUTLIST,’SHARED ’);

VREPLACE—replace a variable
The VREPLACE service is used only with CALL ISPLINK or CALL ISPLNK calls.

The VREPLACE service allows a program module to update the contents of a
variable in the function pool.

The variable names can be specified as single 8-character values, a list enclosed in
parentheses, or a name-list structure. An array of lengths must be supplied on
input to map the area that contains the data for each of the variables.

The variable to be updated can be the function's own defined variable, if it exists,
or an implicit variable associated with the function. If the named variable does not
exist, it is created as an implicit function variable.

Command invocation format
ISPEXEC *This service does not apply to

APL2 or command procedures*

Call invocation format
CALL ISPEXEC *This service cannot be used with this interface*

or

�� CALL ISPLINK ('VREPLACE' , name-list, lengths, values); ��

Parameters
name-list

Specifies the names of the dialog variables whose values are to be updated.
The standard name-list format is used.

lengths
Specifies an array of values giving, for each corresponding variable in the
name-list, the number of bytes of the data to be used in the updating. Each
field in the array must be a fullword binary integer.

values
Specifies, in the buffer mapped by the length array, the update data to be used
in the updating.

Return codes
These return codes are possible:

0 Normal completion.

16 Truncation has occurred during data movement.

20 Severe error.

VPUT

Chapter 2. Description of the ISPF services 333

Example
Copy the value of a field named QROWSD from this PL/I program module to the
function variable named QROWS. Before the copy operation, if no variable with
this name is found in the function pool, create one, giving it the name QROWS.
Program variable L8 contains a value of 8.
CALL ISPLINK (’VREPLACE’,’QROWS ’,L8,QROWSD);

VRESET—reset function variables
The VRESET service is used only with CALL ISPLINK or CALL ISPLNK calls.

The VRESET service allows a program to remove its function pool variables as
though VDELETEs had been done. Any implicit variables are also deleted.

Command invocation format
ISPEXEC *This service does not apply to

APL or command procedures*

Call invocation format
CALL ISPEXEC *This service cannot be used with this interface*

or

�� CALL ISPLINK ('VRESET��'); ��

Return codes
These return codes are possible:

0 Normal completion.

20 Severe error.

Example
Remove ISPF accessibility to all PL/I program variables.
CALL ISPLINK (’VRESET ’);

VSYM—resolve system symbols
The VSYM service updates the value of dialog variables found in the function pool
by resolving the values of any system symbols. This includes all system static
symbols and dynamic symbols and any user-defined static symbols. The z/OS MVS
Initialization and Tuning Reference has details on system static and dynamic symbols.
Consult your system programmer for any locally defined user symbols as these are
system and installation dependent If the named dialog variable is not found in the
function pool, it is not created.

Command invocation format

�� ISPEXEC VSYM name-list ��

VREPLACE

334 z/OS V2R2 ISPF Services Guide

Call invocation format

�� CALL ISPEXEC (buf-len, buffer); ��

or

�� CALL ISPLINK ('VSYM����' , name-list); ��

Parameters
name-list

Specifies the names of one or more dialog variables whose values in the
function pool are to be processed to resolve system symbols. The names are
passed in the standard name-list format

Return codes
These return codes are possible:

0 Normal completion.

4 One or more symbol names not substituted (no corresponding system
symbol was found).

8 Variable not found in function pool.

12 Validation failed.

16 Truncation occurred resolving system symbols.

20 Severe error.

Example
In a CLIST, define the variable DSNLVL to contain a data set prefix of SYS2, and
the second qualifier to that of the sysplex on which the command is executed.
SET DSNLVL = SYS2.&&SYSPLEX
ISPEXEC VSYM (DSNLVL)

When executed on a system that is a member of a sysplex named SYSPLEX1, the
resulting value of DSNLVL is SYS2.SYSPLEX1.

The same example in REXX is:
DSNLVL = ’SYS2.&SYSPLEX’
address "ISPEXEC"
"VSYM (DSNLVL)"

WSCON—connect to a workstation
The WSCON service enables you to connect to the workstation without using the
GUI parameter on the ISPSTART command and the Initiate Workstation
Connection panel from the ISPF settings.

You can issue the WSCON service from a program, CLIST, or REXX exec to
connect to the workstation.

Note: When connecting to the workstation in GUI mode, group boxes and images
that are defined in the panel might not be displayed correctly on the first GUI

VSYM

Chapter 2. Description of the ISPF services 335

panel. Constructs that are conditional on the ZGUI variable being set might not be
displayed. After the user presses the Enter key, causing the panel to be
reprocessed, all these constructs will be visible in GUI mode.

Command invocation format

�� ISPEXEC WSCON
IP(ip_var_name) LU(lu_var_name) FI

�

�
TITLE(title_var_name) FRAME(STD)

FIX
DLG

BKGRND(STD
DLG)

�

�
CODEPAGE(codepage) CHARSET(character_SET) NOGUIDSP

�

�
PANEL(YES)

NO
ONERROR

��

Call invocation format

�� CALL ISPLINK ('WSCON���' , ip_var_name
'�'

, lu_var_name
'�'

�

� , FI
'�'

, title_var_name
'�'

, '�'
STD
FIX
DLG

, '�'
STD
DLG

, codepage
'�'

�

� , character_set
'�'

, NOGUIDSP
'�'

, '�');
YES
NO
ONERROR

��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
IP(ip_var_name)

The name of the dialog variable containing the workstation's TCP/IP address
or host name. The value can be a maximum of 64 characters. If the TCP/IP
address is set to an asterisk (*), the value of the system variable ZIPADDR is
used. ZIPADDR contains the TCP/IP address of the currently connected
TN3270 workstation.

LU(lu_var_name)
The name of the dialog variable containing the workstation's APPC address or
host name. The value can be a maximum of 64 characters.

WSCON

336 z/OS V2R2 ISPF Services Guide

FI This parameter specifies that you want ISPF to search the file allocated to
ISPDTPRF DD for your network address.

TITLE(title_var_name)
The name of the dialog variable containing the title for the ISPF GUI panels if
ZWINTTL or ZAPPTTL in not defined by the dialog. The value can be a
maximum of 64 characters.

FRAME(STD | FIX | DLG)
This parameter specifies that the first window frame displayed in GUI mode
be standard (STD), fixed (FIX), or dialog (DLG). If this parameter is not
specified, the value from the user's system profile is used. If no value is saved
in the system profile, STD is the default.

BKGRND(STD | DLG)
This parameter specifies that the first window displayed in GUI mode have
standard (STD) or dialog (DLG) background color. The colors are defined by
the workstation. If this parameter is not specified, the value from the user's
system profile is used. If no value is saved in the system profile, DLG is the
default.

CODEPAGE(codepage)
This numeric value is used as the host code page in translating data from the
host to the workstation, regardless of the values returned from the terminal
query.

If CODEPAGE is specified, CHARSET must also be specified. If these values
are not specified on the WSCON service, then values previously specified on
the Initiate Workstation Connection panel and saved in the user's system
profile are used. If there are no code page and character set values saved in the
system profile, then values from the terminal query are used. If your terminal
or emulator does not support code pages, the CODEPAGE and CHARSET
parameter values on ISPSTART are used. If ISPSTART does not have the
parameters specified, English is the default.

CHARSET(character_set)
This numeric value is used as the host character set in translating data from
the host to the workstation, regardless of the values returned from the terminal
query.

If CHARSET is specified, CODEPAGE must also be specified. If these values
are not specified on the WSCON service, then values previously specified on
the Initiate Workstation Connection panel and saved in the user's system
profile are used. If there are no code page and character set values saved in the
system profile, then values from the terminal query are used. If your terminal
or emulator does not support code pages, the CODEPAGE and CHARSET
parameter values on ISPSTART are used. If ISPSTART does not have the
parameters specified, English is the default.

NOGUIDSP
This parameter specifies that you want to make a connection to the
workstation, but do not want ISPF to display in GUI mode. If this parameter is
not specified, ISPF displays in GUI mode.

PANEL(YES | NO | ONERROR)
This parameter specifies whether you want the Initiate Workstation Connection
panel to be displayed.

If YES is specified, the Initiate Workstation Connection panel fields are
initialized with the values of IP, LU, and TITLE that you have specified, even if
the specified dialog variable value is blank.

WSCON

Chapter 2. Description of the ISPF services 337

If NO is specified, appropriate return codes are issued if there are errors with
the specified parameters. Parameter values are not saved in the user's system
profile. NO is the default.

ONERROR specifies that the panel is to be displayed only if there is an error
with the specified parameters. Any parameter that is not valid causes the panel
to display with the non-valid values in the appropriate fields.

buf-len
This specifies a fullword fixed binary integer containing the length of "buffer".

buffer
This specifies a buffer containing the name of the service and its parameters in
the same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
These return codes are possible:

0 Normal completion. Connection established.

8 The user pressed End, Exit, or Cancel from the Initiate Workstation
Connection panel without making a connection.

12 Already in GUI mode. Recursive error.

14 Connecting in GUI mode is not supported when in partition mode or split
screen.

16 Cannot connect to workstation.

20 Parameters not valid or syntax conflict. For example, both IP and LU
specified.

Example
This example defines the workstation address and title variables, and invokes the
WSCON service to initiate a GUI display.
DECLARE

GUI_TITLE CHAR(64),
IP_ADDRESS CHAR(64),
BLANKS CHAR(8);

IP_ADDRESS = ’32.225.17.228’;
CALL ISPLINK(’VDEFINE ’,’MYADDR ’,IP_ADDRESS,’CHAR’,64);

GUI_TITLE = ’THIS IS MY TITLE FOR MY GUI SESSION’;
CALL ISPLINK(’VDEFINE ’,’MYTITLE ’,GUI_TITLE,’CHAR’,64);

CALL ISPLINK(’WSCON ’,
’MYADDR’, /* IP */
BLANKS, /* LU */
BLANKS, /* FI */
’MYTITLE’, /* TITLE */
’FIX’, /* FRAME */
’STD’, /* BACKGROUND COLOR */
37, /* CODEPAGE */
697, /* CHARACTER SET */
BLANKS, /* NOGUIDSP */
’ONERROR’); /* PANEL */

WSCON

338 z/OS V2R2 ISPF Services Guide

WSDISCON—disconnect from a workstation
The WSDISCON service enables you to disconnect from the workstation without
having to terminate your ISPF session.

You can issue the WSDISCON service from a program, CLIST, or REXX exec to
disconnect from the workstation.

Command invocation format

�� ISPEXEC WSDISCON ��

Call invocation format

�� CALL ISPLINK ('WSDISCON'); ��

or

�� CALL ISPEXEC (buf-len, buffer); ��

Parameters
buf-len

This specifies a fullword fixed binary integer containing the length of "buffer".

buffer
This specifies a buffer containing the name of the service.

Return codes
These return codes are possible:

0 Normal completion. User is disconnected from workstation.

8 User is trying to disconnect from workstation, but there is no current
connection.

10 User is trying to disconnect from GUI mode, but is connected with
GUISCRD or GUISCRW values that are different than the host emulator
session. User is not disconnected.

12 User is trying to disconnect from a GUI display when running BATCH
GUI mode. User is not disconnected.

14 User is trying to disconnect from workstation while running the
Workstation Tool Integration Configuration Program. User is not
disconnected.

Usage notes
1. If the CODEPAGE and CHARSET parameters were specified on the WSCON

service, the Initiate Workstation Connection panel, or the ISPSTART GUI
statement when a connection was made to the workstation, their values might
no longer be the host code page and character set in 3270 mode following a
WSDISCON service invocation. The values returned from the terminal query
are restored as the active code page and character set. If your terminal or

WSDISCON

Chapter 2. Description of the ISPF services 339

emulator does not support code pages, the CODEPAGE and CHARSET
parameter values originally specified on your ISPSTART statement are used. If
these parameters were not specified on ISPSTART, English is the default.

2. If you are running with TSO line mode support while displaying ISPF in GUI
mode, the ISPF/TSO window continues to display TSO line mode after the
WSDISCON service is issued. The ISPF/TSO window is not removed until
your ISPF session is terminated.

Restrictions
v When disconnecting from GUI mode, the name of any group boxes defined on

the panel that WSDISCON was issued from will display on the screen in 3270
mode. After the user presses the Enter key, causing the panel to reprocess, then
these group box names disappear and any panel text under the names
reappears.

v If the user is in GUI mode and in split screen mode when the WSDISCON
service is invoked, he is disconnected from the workstation, and the screen from
which the WSDISCON service was invoked is displayed in the full 3270
emulator session without a split line. The setting of the user's “Always show
split line” parameter has no effect on this. The other ISPF sessions are hidden
and available for display after the SWAP command is entered. Additional split
requests cause the split line to redisplay, provided that the “Always show split
line” setting is selected.

v If pop-up windows are displayed in GUI mode when the WSDISCON service is
invoked, the pop-up windows are suspended on the 3270 session. The panels are
displayed as full-screen panels. If new addpops are then invoked, the new
panels display as pop-ups.

v The user cannot issue WSDISCON when running in Batch GUI mode.

WSDISCON

340 z/OS V2R2 ISPF Services Guide

Appendix A. JSON API

JSON data structures and variables used to communicate between
ISPF and a client

This section describes the format of the JSON (Javascript Object Notation) data
structures that can be exchanged between ISPF and a client to allow the client to
process ISPF panels. These JSON data structures were developed for the
implementation of ISPF application processing in z/OSMF (z/OS System
Management Facility). With z/OS 1.13, z/OSMF is able to display in a web
browser the panels for an ISPF application.

ISPF creates and sends to the client a JSON data structure that describes the layout
of an ISPF panel. The client handles the display processing for the panel and is
responsible for creating and sending to ISPF a JSON data structure that describes
the user response for the panel.

JSON data structures are also used by TSO to communicate any TSO messages to
the client. For TSO messages that require a user response, the client is required to
return a JSON data structure that describes the response.

A z/OS UNIX message queue is used to handle the exchange of JSON data
structures between ISPF and the client. The TSO launcher component of CEA
(Common Event Adapter) must be invoked to create the TSO address space used
to run ISPF because the launcher handles the creation of the z/OS UNIX message
queue and passing of the message queue identifier to TSO and ISPF. Message type
identifiers are used to identify the different messages sent from ISPF, TSO and the
client.

Message type
Description

2 JSON data structure sent from TSO to client

3 JSON data structure sent from ISPF to client

7 JSON data structure sent from client to TSO

8 JSON data structure sent from client to ISPF

The following sections provide JSON schemas to describe the JSON data structures
used to communicate between TSO/ISPF and the client.

JSON data structures sent from TSO to client (message type 2)

TSO Message JSON
The following schema describes the JSON data structure for a TSO message:
{

"TSO MESSAGE":{
"description":"TSO message for the client",
"type":"object",
"properties":{

"VER":{

© Copyright IBM Corp. 1980, 2015 341

"description":"TSO message JSON version identifier",
"type":"string",
"maxLength":4,
"required":true

},
"DATA":{

"description":"message text",
"type":"string",
"maxLength":32767,
"required":true

}
}

}
}

TSO message JSON example
Here is an example of the JSON for the message generated when the user enters
the TSO command LISTCAT LVL:
{

"TSO MESSAGE":{
"VERSION":"0100",
"DATA":"ENTER LEVEL NAME - "

}
}

TSO prompt JSON
The following schema describes the JSON data structure generated when TSO
requires a response from the user:
{

"TSO PROMPT":{
"description":"TSO prompt request for the client",
"type":"object",
"properties":{

"VER":{
"description":"TSO prompt JSON version identifier",
"type":"string",
"maxLength":4,
"required":true

},
"HIDDEN":{

"description":"Specifies if the response should be hidden",
"type":"string",
"maxLength":5,
"enum":["TRUE","FALSE"],
"required":true

}
}

}
}

TSO prompt JSON example
Here is an example of the JSON when the user enters a command like LISTCAT
LVL and TSO requires the user to provide a response:
{

"TSO PROMPT":{
"VERSION":"0100",
"HIDDEN":"FALSE"

}
}

JSON data structures sent from TSO to client (message type 2)

342 z/OS V2R2 ISPF Services Guide

JSON data structures sent from ISPF to client (message type 3)

ISPF panel display JSON
The following schema describes the JSON data structure for an ISPF panel display:

{
"PNL":{

"description":"ISPF panel display data and format",
"type":"object",
"properties":{

"VER":{
"description":"ISPF panel JSON version identifier",
"type":"string",
"maxLength":4,
"required":true

},
"NME":{

"description":"Panel name",
"type":"string",
"maxLength":8,
"required":true

},
"SCR":{

"description":"ISPF logical screen identifier",
"type":"string",
"maxLength":1,
"required":true

},
"SCN":{

"description":"Screen name defined for this panel",
"type":"string",
"maxLength":8

},
"HDL":{

"description":"Handle value - used internally by ISPF",
"type":"string",
"maxLength":12,
"required":true

},
"RWS":{

"description":"Panel height - number of rows",
"type":"integer",
"maximum":204,
"required":true

},
"CLS":{

"description":"Panel width - number of columns",
"type":"integer",
"maximum":160,
"required":true

},
"TLE":{

"description":"Panel title",
"type":"string"

},
"EDT":{

"description":"Edit data display indicator",
"type":"string",
"enum":["TRUE"]

},
"CML":{

"description":"Command line location",
"type":"string",
"enum":["BOTTOM","ASIS","NONE"],

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 343

"required":true
},
"ALA":{

"description":"Indicates an alarm should sound when the panel is displayed",
"type":"string",
"enum":["TRUE"]

},
"CUR":{

"description":"The cursor location on the panel",
"type":"object",
"required":true,
"properties":{

"ROW":{
"description":"The number of the panel row the cursor is on",
"type":"integer",
"maximum":204,
"required":true

},
"CLM":{

"description":"The number of the panel column the cursor is on",
"type":"integer",
"maximum":160,
"required":true

}
}

},
"SUP":{

"description":"Indicates the current panel display can be scrolled up",
"type":"string",
"enum":["TRUE"]

},
"SDN":{

"description":"Indicates the current panel display can be scrolled down",
"type":"string",
"enum":["TRUE"]

},
"SLF":{

"description":"Indicates the current panel display can be scrolled left",
"type":"string",
"enum":["TRUE"]

},
"SRG":{

"description":"Indicates the current panel display can be scrolled right",
"type":"string",
"enum":["TRUE"]

},
"IFY":{

"description":"Identifiers currently active for this panel display",
"type":"object",
"required":true,
"properties":{

"SYS":{
"description":"The system ID currently displayed with the panel",
"type":"string",
"maxLength":8,
"required":true

},
"UID":{

"description":"The user ID currently displayed with the panel",
"type":"string",
"maxLength":8,
"required":true

},
"PNL":{

"description":"Indicates that the panel name is currently displayed with the panel",
"type":"string",
"enum":["TRUE"]

JSON data structures sent from ISPF to client (message type 3)

344 z/OS V2R2 ISPF Services Guide

},
"SCR":{

"description":"Indicates that the screen ID is currently displayed with the panel",
"type":"string",
"enum":["TRUE"]

}
}

},
"MSG":{

"description":"Details of a message displayed with the panel",
"type":"object",
"properties":{

"ID":{
"description":"The message identifier",
"type":"string",
"maxLength":8

},
"TYP":{

"description":"The message type as defined on the TYPE keyword for the message",
"type":"string",
"maxLength":1,
"enum":["N","W","A","C"]

},
"HLP":{

"description":"Indicates there is no help associated with this message
(i.e. no help panel or long message for a short message)",

"type":"string"
},
"LEN":{

"description":"Length of the message text",
"type":"integer"

},
"TXT":{

"description":"The text for the message",
"type":"string",
"maxLength":512

}
}

},
"ARE":{

"description":"The scrollable, dynamic, and table model areas defined for the panel",
"type":"array",
"items":{

"NME":{
"description":"The name used to define to dynamic or scrollable area.

For a table model area this is the table name.",
"type":"string",
"maxLength":8

},
"TYP":{

"description":"The type of area - D=dynamic, S=scrollable, T=table model",
"type":"string",
"maxLength":1,
"enum":["D","S","T"]

},
"TOP":{

"description":"The panel row where the top of this area is located",
"type":"integer"

},
"BOT":{

"description":"The panel row where the bottom of this area is located",
"type":"integer"

},
"LFT":{

"description":"The panel row where the left side of this area is located",
"type":"integer"

},

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 345

"RGT":{
"description":"The panel row where the right side of this area is located",
"type":"integer"

}
}

},
"CHA":{

"description":"The color and highlighting defined for the character level attributes
to be used in the dynamic areas for the panel",

"type":"array",
"items":{

"COL":{
"description":"The color assigned for this character level attribute",
"type":"string",
"enum":["AQUA","BLUE","GREEN","PINK","RED","WHITE","YELLOW"]

},
"HIL":{

"description":"The highlighting assigned for this character level attribute",
"type":"string",
"enum":["BLINK","RVIDEO","USCORE"]

}
}

},
"MNU":{

"description":"The action bar choices and pull-down menus for the panel",
"type":"array",
"items":{

"PUL":{
"description":"Pull-down menu description text",
"type":"string"

},
"CHS":{

"description":"The choices for the pull-down menu",
"type":"array",
"items":{

"N":{
"description":"Pull-down choice description text",
"type":"string"

},
"I":{

"description":"An identifier used to indicate when the pull-down choice has
been selected",
"type":"string"

}
}

}
}

},
"FLD":{

"description":"The input, output, point-and-shoot, and text fields displayed on the panel",
"type":"array",
"items":{

"T":{
"description":"The field type - I=input, O=output, P=point-and-shoot, T=text",
"type":"string",
"enum":["I","O","P","T"]

},
"P":{

"description":"Indicates this input field is also a point-and-shoot field",
"type":"string",
"enum":["TRUE"]

},
"Z":{

"description":"Indicates this is the command field for the panel",
"type":"string",
"enum":["TRUE"]

},

JSON data structures sent from ISPF to client (message type 3)

346 z/OS V2R2 ISPF Services Guide

"A":{
"description":"The name of the scrollable, dynamic, or table model area
where this field is located",
"type":"string",
"maxLength":8

},
"Y":{

"description":"The panel row where the field is located",
"type":"integer",
"maximum":204

},
"X":{

"description":"The panel column where the field is located",
"type":"integer",
"maximum":160

},
"C":{

"description":"The color of the field",
"type":"string",
"enum":["AQUA","BLUE","GREEN","PINK","RED","WHITE","YELLOW"]

},
"I":{

"description":"The intensity of the field",
"type":"string",
"enum":["HIGH","LOW","NON"]

},
"H":{

"description":"The highlighting for the field",
"type":"string",
"enum":["BLINK","RVIDEO","USCORE"]

},
"L":{

"description":"The length of the field",
"type":"integer"

},
"LX":{

"description":"The total length for a scrollable field",
"type":"integer",
"maximum":32767

},
"N":{

"description":"The name associated with the field",
"type":"string",
"maxLength":14

},
"D":{

"description":"The data for the field",
"type":"string",
"maxLength":32767

},
"SL":{

"description":"Identifies a selection field defined as a check box or radio button",
"type":"object",
"properties":{

"T":{
"description":"Type of selection field - CB=check box, RD=radio button",
"type":"string",
"enum":["CB","RD"]

},
"V":{

"description":"The data value associated with selecting this field",
"type":"string"

},
"N":{

"description":"For a radio button selection, the name of the input field to
be updated with the associated value",

"type":"string",

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 347

"maxLength":8
},
"G":{

"description":"For a radio button selection, the group number used to
identify related selection fields",

"type":"integer",
"maximum":99

}
}

},
"SHS":{

"description":"For a field in a dynamic area, identifies the sections of the
field that are highlighted using character level (shadow) attributes",

"type":"array",
"items":{

"STA":{
"description":"The starting position within the field for a set of

characters highlighted by a character level attribute",
"type":"integer"

},
"LEN":{

"description":"The number of characters from the starting position that are
highlighted by the character level attribute",

"type":"integer"
},
"ATT":{

"description":"The number identifying the entry in the \"CHA\" array (see
above) for the character level attribute used to highlight this section of the field",

"type":"integer"
}

}
}

}
},
"KEY":{

"description":"The function keys defined for display with this panel",
"type":"array",
"items":{

"K":{
"description":"The function key identifier",
"type":"string",
"enum":["ENTER","1","2","3","4","5","6","7","8","9","11","12","13","14","15",
"16","17","18","19","20","21","22","23","24"]

},
"N":{

"description":"The label defined for the function key",
"type":"string"

}
}

}
}

}
}

ISPF panel display JSON examples
Here is an example of the JSON for a display of the ISPF primary options menu:

{
"PNL":{

"VER":"0100",
"NME":"ISR@PRIM",
"SCR":"1",
"HDL":"000162984204",
"RWS":24,
"CLS":80,
"TLE":"ISPF Primary Option Menu",
"CML":"BOTTOM",

JSON data structures sent from ISPF to client (message type 3)

348 z/OS V2R2 ISPF Services Guide

"CUR":{
"ROW":24,
"CLM":14

},
"IFY":{

"SYS":"",
"UID":""

},
"MSG":{

"ID":"ISRLO999",
"TYP":"N",
"HLP":"FALSE",
"LEN":423,
"TXT":"Licensed Materials - Property of IBM
5650-ZOS Copyright IBM Corp. 1980, 2012.
All rights reserved.
US Government Users Restricted Rights -
Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp."

},
"ARE":[{

"NME":"TMPROWS",
"TYP":"D",
"TOP":5,
"BOT":15,
"LFT":58,
"RGT":78

},
{

"NME":"SAREA39",
"TYP":"S",
"TOP":4,
"BOT":17,
"LFT":1,
"RGT":56

}
],
"CHA":[{

"COL":"WHITE"
},
{

"COL":"RED"
},
{

"COL":"BLUE"
},
{

"COL":"GREEN"
},
{

"COL":"PINK"
},
{

"COL":"YELLOW"
},
{

"COL":"AQUA"
},
{

"COL":"WHITE",
"HIL":"RVIDEO"

},
{

"COL":"RED",
"HIL":"RVIDEO"

},
{

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 349

"COL":"BLUE",
"HIL":"RVIDEO"

},
{

"COL":"GREEN",
"HIL":"RVIDEO"

},
{

"COL":"PINK",
"HIL":"RVIDEO"

},
{

"COL":"YELLOW",
"HIL":"RVIDEO"

},
{

"COL":"AQUA",
"HIL":"RVIDEO"

}
],
"MNU":[{

"PUL":" Menu",
"CHS":[{

"N":"Settings",
"I":"1-1"

},
{

"N":"View",
"I":"1-2"

},
{

"N":"Edit",
"I":"1-3"

},
{

"N":"ISPF Command Shell",
"I":"1-4"

},
{

"N":"Dialog Test...",
"I":"1-5"

},
{

"N":"Other IBM Products...",
"I":"1-6"

},
{

"N":"SCLM",
"I":"1-7"

},
{

"N":"ISPF Workplace",
"I":"1-8"

},
{

"N":"Status Area...",
"I":"1-9"

},
{

"N":"Exit",
"I":"1-10"

}
]

},
{

"PUL":" Utilities",
"CHS":[{

JSON data structures sent from ISPF to client (message type 3)

350 z/OS V2R2 ISPF Services Guide

"N":"Library",
"I":"2-1"

},
{

"N":"Data set",
"I":"2-2"

},
{

"N":"Move/Copy",
"I":"2-3"

},
{

"N":"Data Set List",
"I":"2-4"

},
{

"N":"Reset Statistics",
"I":"2-5"

},
{

"N":"Hardcopy",
"I":"2-6"

},
{

"N":"Download...",
"I":"2-7"

},
{

"N":"Outlist",
"I":"2-8"

},
{

"N":"Commands...",
"I":"2-9"

},
{

"N":"Reserved",
"I":"2-10",
"D":"TRUE"

},
{

"N":"Format",
"I":"2-11"

},
{

"N":"SuperC",
"I":"2-12"

},
{

"N":"SuperCE",
"I":"2-13"

},
{

"N":"Search-For",
"I":"2-14"

},
{

"N":"Search-ForE",
"I":"2-15"

},
{

"N":"Table Utility",
"I":"2-16"

},
{

"N":"Directory List",
"I":"2-17"

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 351

}
]

},
{

"PUL":" Compilers",
"CHS":[{

"N":"Foreground Compilers",
"I":"3-1"

},
{

"N":"Background Compilers",
"I":"3-2"

},
{

"N":"ISPPREP Panel Utility...",
"I":"3-3"

},
{

"N":"DTL Compiler...",
"I":"3-4"

}
]

},
{

"PUL":" Options",
"CHS":[{

"N":"General Settings",
"I":"4-1"

},
{

"N":"CUA Attributes...",
"I":"4-2"

},
{

"N":"Keylists...",
"I":"4-3"

},
{

"N":"Point-and-Shoot...",
"I":"4-4"

},
{

"N":"Colors...",
"I":"4-5"

},
{

"N":"Dialog Test appl ID...",
"I":"4-6"

}
]

},
{

"PUL":" Status",
"CHS":[{

"N":"Session",
"I":"5-1",
"D":"TRUE"

},
{

"N":"Function keys",
"I":"5-2"

},
{

"N":"Calendar",
"I":"5-3"

},
{

JSON data structures sent from ISPF to client (message type 3)

352 z/OS V2R2 ISPF Services Guide

"N":"User status",
"I":"5-4"

},
{

"N":"User point and shoot",
"I":"5-5"

},
{

"N":"None",
"I":"5-6"

}
]

},
{

"PUL":" Help",
"CHS":[{

"N":"General",
"I":"6-1"

},
{

"N":"Settings",
"I":"6-2"

},
{

"N":"View",
"I":"6-3"

},
{

"N":"Edit",
"I":"6-4"

},
{

"N":"Utilities",
"I":"6-5"

},
{

"N":"Foreground",
"I":"6-6"

},
{

"N":"Batch",
"I":"6-7"

},
{

"N":"Command",
"I":"6-8"

},
{

"N":"Dialog Test",
"I":"6-9"

},
{

"N":"IBM Products",
"I":"6-10"

},
{

"N":"SCLM",
"I":"6-11"

},
{

"N":"Workplace",
"I":"6-12"

},
{

"N":"Exit",
"I":"6-13"

},

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 353

{
"N":"Status Area",
"I":"6-14"

},
{

"N":"About...",
"I":"6-15"

},
{

"N":"Changes for this Release",
"I":"6-16"

},
{

"N":"Tutorial",
"I":"6-17"

},
{

"N":"Appendices",
"I":"6-18"

},
{

"N":"Index",
"I":"6-19"

}
]

}
],
"FLD":[{

"T":"T",
"Y":3,
"X":29,
"C":"BLUE",
"I":"LOW",
"L":24,
"D":"ISPF Primary Option Menu"

},
{

"T":"T",
"Y":5,
"X":2,
"C":"WHITE",
"I":"LOW",
"L":1,
"D":"0"

},
{

"T":"P",
"Y":5,
"X":5,
"C":"AQUA",
"I":"HIGH",
"L":13,
"N":"0PS-6-5",
"D":"Settings "

},
{

"T":"T",
"Y":5,
"X":19,
"C":"GREEN",
"I":"LOW",
"L":28,
"D":"Terminal and user parameters"

},
{

"T":"T",
"Y":5,

JSON data structures sent from ISPF to client (message type 3)

354 z/OS V2R2 ISPF Services Guide

"X":58,
"C":"GREEN",
"I":"LOW",
"L":12,
"D":" User ID . :"

},
{

"T":"T",
"A":"TMPROWS ",
"Y":5,
"X":71,
"C":"AQUA",
"I":"LOW",
"L":7,
"D":"PVANDYK"

},
{

"T":"T",
"Y":6,
"X":2,
"C":"WHITE",
"I":"LOW",
"L":1,
"D":"1"

},
{

"T":"P",
"Y":6,
"X":5,
"C":"AQUA",
"I":"HIGH",
"L":13,
"N":"0PS-7-5",
"D":"View "

},
{

"T":"T",
"Y":6,
"X":19,
"C":"GREEN",
"I":"LOW",
"L":31,
"D":"Display source data or listings"

},
{

"T":"T",
"Y":6,
"X":58,
"C":"GREEN",
"I":"LOW",
"L":12,
"D":" Time. . . :"

},
{

"T":"T",
"A":"TMPROWS ",
"Y":6,
"X":71,
"C":"AQUA",
"I":"LOW",
"L":5,
"D":"12:38"

},
{

"T":"T",
"Y":7,
"X":2,

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 355

"C":"WHITE",
"I":"LOW",
"L":1,
"D":"2"

},
{

"T":"P",
"Y":7,
"X":5,
"C":"AQUA",
"I":"HIGH",
"L":13,
"N":"0PS-8-5",
"D":"Edit "

},
{

"T":"T",
"Y":7,
"X":19,
"C":"GREEN",
"I":"LOW",
"L":28,
"D":"Create or change source data"

},
{

"T":"T",
"Y":7,
"X":58,
"C":"GREEN",
"I":"LOW",
"L":12,
"D":" Terminal. :"

},
{

"T":"T",
"A":"TMPROWS ",
"Y":7,
"X":71,
"C":"AQUA",
"I":"LOW",
"L":4,
"D":"3278"

},
{

"T":"T",
"Y":8,
"X":2,
"C":"WHITE",
"I":"LOW",
"L":1,
"D":"3"

},
{

"T":"P",
"Y":8,
"X":5,
"C":"AQUA",
"I":"HIGH",
"L":13,
"N":"0PS-9-5",
"D":"Utilities "

},
{

"T":"T",
"Y":8,
"X":19,
"C":"GREEN",

JSON data structures sent from ISPF to client (message type 3)

356 z/OS V2R2 ISPF Services Guide

"I":"LOW",
"L":25,
"D":"Perform utility functions"

},
{

"T":"T",
"Y":8,
"X":58,
"C":"GREEN",
"I":"LOW",
"L":12,
"D":" Screen. . :"

},
{

"T":"T",
"A":"TMPROWS ",
"Y":8,
"X":71,
"C":"AQUA",
"I":"LOW",
"L":1,
"D":"1"

},
{

"T":"T",
"Y":9,
"X":2,
"C":"WHITE",
"I":"LOW",
"L":1,
"D":"4"

},
{

"T":"P",
"Y":9,
"X":5,
"C":"AQUA",
"I":"HIGH",
"L":13,
"N":"0PS-10-5",
"D":"Foreground "

},
{

"T":"T",
"Y":9,
"X":19,
"C":"GREEN",
"I":"LOW",
"L":31,
"D":"Interactive language processing"

},
{

"T":"T",
"Y":9,
"X":58,
"C":"GREEN",
"I":"LOW",
"L":12,
"D":" Language. :"

},
{

"T":"T",
"A":"TMPROWS ",
"Y":9,
"X":71,
"C":"AQUA",
"I":"LOW",

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 357

"L":7,
"D":"ENGLISH"

},
{

"T":"T",
"Y":10,
"X":2,
"C":"WHITE",
"I":"LOW",
"L":1,
"D":"5"

},
{

"T":"P",
"Y":10,
"X":5,
"C":"AQUA",
"I":"HIGH",
"L":13,
"N":"0PS-11-5",
"D":"Batch "

},
{

"T":"T",
"Y":10,
"X":19,
"C":"GREEN",
"I":"LOW",
"L":34,
"D":"Submit job for language processing"

},
{

"T":"T",
"Y":10,
"X":58,
"C":"GREEN",
"I":"LOW",
"L":12,
"D":" Appl ID . :"

},
{

"T":"T",
"A":"TMPROWS ",
"Y":10,
"X":71,
"C":"AQUA",
"I":"LOW",
"L":3,
"D":"ISR"

},
{

"T":"T",
"Y":11,
"X":2,
"C":"WHITE",
"I":"LOW",
"L":1,
"D":"6"

},
{

"T":"P",
"Y":11,
"X":5,
"C":"AQUA",
"I":"HIGH",
"L":13,
"N":"0PS-12-5",

JSON data structures sent from ISPF to client (message type 3)

358 z/OS V2R2 ISPF Services Guide

"D":"Command "
},
{

"T":"T",
"Y":11,
"X":19,
"C":"GREEN",
"I":"LOW",
"L":33,
"D":"Enter TSO or Workstation commands"

},
{

"T":"T",
"Y":11,
"X":58,
"C":"GREEN",
"I":"LOW",
"L":12,
"D":" TSO logon :"

},
{

"T":"T",
"A":"TMPROWS ",
"Y":11,
"X":71,
"C":"AQUA",
"I":"LOW",
"L":5,
"D":"STEP1"

},
{

"T":"T",
"Y":12,
"X":2,
"C":"WHITE",
"I":"LOW",
"L":1,
"D":"7"

},
{

"T":"P",
"Y":12,
"X":5,
"C":"AQUA",
"I":"HIGH",
"L":13,
"N":"0PS-13-5",
"D":"Dialog Test "

},
{

"T":"T",
"Y":12,
"X":19,
"C":"GREEN",
"I":"LOW",
"L":22,
"D":"Perform dialog testing"

},
{

"T":"T",
"Y":12,
"X":58,
"C":"GREEN",
"I":"LOW",
"L":12,
"D":" TSO prefix:"

},

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 359

{
"T":"T",
"A":"TMPROWS ",
"Y":12,
"X":71,
"C":"AQUA",
"I":"LOW",
"L":7,
"D":"PVANDYK"

},
{

"T":"T",
"Y":13,
"X":2,
"C":"WHITE",
"I":"LOW",
"L":1,
"D":"9"

},
{

"T":"P",
"Y":13,
"X":5,
"C":"AQUA",
"I":"HIGH",
"L":13,
"N":"0PS-14-5",
"D":"IBM Products "

},
{

"T":"T",
"Y":13,
"X":19,
"C":"GREEN",
"I":"LOW",
"L":32,
"D":"IBM program development products"

},
{

"T":"P",
"A":"TMPROWS ",
"Y":13,
"X":59,
"C":"AQUA",
"I":"HIGH",
"L":20,
"N":"0PS-14-59",
"D":"System ID : ISA2 "

},
{

"T":"T",
"Y":14,
"X":2,
"C":"WHITE",
"I":"LOW",
"L":2,
"D":"10"

},
{

"T":"P",
"Y":14,
"X":5,
"C":"AQUA",
"I":"HIGH",
"L":13,
"N":"0PS-15-5",
"D":"SCLM "

JSON data structures sent from ISPF to client (message type 3)

360 z/OS V2R2 ISPF Services Guide

},
{

"T":"T",
"Y":14,
"X":19,
"C":"GREEN",
"I":"LOW",
"L":32,
"D":"SW Configuration Library Manager"

},
{

"T":"T",
"Y":14,
"X":58,
"C":"GREEN",
"I":"LOW",
"L":12,
"D":" MVS acct. :"

},
{

"T":"T",
"A":"TMPROWS ",
"Y":14,
"X":71,
"C":"AQUA",
"I":"LOW",
"L":8,
"D":"**NONE**"

},
{

"T":"T",
"Y":15,
"X":2,
"C":"WHITE",
"I":"LOW",
"L":2,
"D":"11"

},
{

"T":"P",
"Y":15,
"X":5,
"C":"AQUA",
"I":"HIGH",
"L":13,
"N":"0PS-16-5",
"D":"Workplace "

},
{

"T":"T",
"Y":15,
"X":19,
"C":"GREEN",
"I":"LOW",
"L":28,
"D":"ISPF Object/Action Workplace"

},
{

"T":"P",
"A":"TMPROWS ",
"Y":15,
"X":59,
"C":"AQUA",
"I":"HIGH",
"L":20,
"N":"0PS-16-59",
"D":"Release . : ISPF 7.1"

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 361

},
{

"T":"T",
"Y":16,
"X":2,
"C":"WHITE",
"I":"LOW",
"L":2,
"D":"12"

},
{

"T":"P",
"Y":16,
"X":5,
"C":"AQUA",
"I":"HIGH",
"L":13,
"N":"0PS-17-5",
"D":"z/OS System "

},
{

"T":"T",
"Y":16,
"X":19,
"C":"GREEN",
"I":"LOW",
"L":35,
"D":"z/OS system programmer applications"

},
{

"T":"T",
"Y":17,
"X":2,
"C":"WHITE",
"I":"LOW",
"L":2,
"D":"13"

},
{

"T":"P",
"Y":17,
"X":5,
"C":"AQUA",
"I":"HIGH",
"L":13,
"N":"0PS-18-5",
"D":"z/OS User "

},
{

"T":"T",
"Y":17,
"X":19,
"C":"GREEN",
"I":"LOW",
"L":22,
"D":"z/OS user applications"

},
{

"T":"O",
"Y":18,
"X":2,
"C":"AQUA",
"I":"LOW",
"L":4,
"N":"ZEXI",
"D":" "

},

JSON data structures sent from ISPF to client (message type 3)

362 z/OS V2R2 ISPF Services Guide

{
"T":"T",
"Y":19,
"X":7,
"C":"GREEN",
"I":"LOW",
"L":5,
"D":"Enter"

},
{

"T":"P",
"Y":19,
"X":13,
"C":"AQUA",
"I":"HIGH",
"L":1,
"N":"0PS-20-13",
"D":"X"

},
{

"T":"T",
"Y":19,
"X":15,
"C":"GREEN",
"I":"LOW",
"L":36,
"D":"to Terminate using log/list defaults"

},
{

"T":"T",
"Y":24,
"X":2,
"C":"GREEN",
"I":"LOW",
"L":11,
"D":"Option ===>"

},
{

"T":"I",
"Z":"TRUE",
"Y":24,
"X":14,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":66,
"N":"ZCMD",
"D":""

}
],
"KEY":[{

"K":"ENTER",
"N":"ENTER"

},
{

"K":"1",
"N":"Help"

},
{

"K":"2",
"N":"Split"

},
{

"K":"3",
"N":"Exit"

},
{

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 363

"K":"7",
"N":"Backward"

},
{

"K":"8",
"N":"Forward"

},
{

"K":"9",
"N":"Swap"

},
{

"K":"10",
"N":"Actions"

},
{

"K":"12",
"N":"Cancel"

}
]

}
}

Here is an example of the JSON for a display of the View entry panel (ISPF option
1):

{
"PNL":{

"VER":"0100",
"NME":"ISRBRO01",
"SCR":"1",
"SCN":"VIEW",
"HDL":"001115829516",
"RWS":24,
"CLS":80,
"TLE":"View Entry Panel",
"CML":"BOTTOM",
"CUR":{

"ROW":6,
"CLM":19

},
"IFY":{

"SYS":"",
"UID":""

},
"ARE":[{

"NME":"SAREA39",
"TYP":"S",
"TOP":4,
"BOT":23,
"LFT":1,
"RGT":80

}
],
"MNU":[{

"PUL":" Menu",
"CHS":[{

"N":"Settings",
"I":"1-1"

},
{

"N":"View",
"I":"1-2",
"D":"TRUE"

},
{

"N":"Edit",

JSON data structures sent from ISPF to client (message type 3)

364 z/OS V2R2 ISPF Services Guide

"I":"1-3"
},
{

"N":"ISPF Command Shell",
"I":"1-4"

},
{

"N":"Dialog Test...",
"I":"1-5"

},
{

"N":"Other IBM Products...",
"I":"1-6"

},
{

"N":"SCLM",
"I":"1-7"

},
{

"N":"ISPF Workplace",
"I":"1-8"

},
{

"N":"Status Area...",
"I":"1-9"

},
{

"N":"Exit",
"I":"1-10"

}
]

},
{

"PUL":" RefList",
"CHS":[{

"N":"Current Data Set List (REFLIST)",
"I":"2-1"

},
{

"N":"Current Library List (REFLIST)",
"I":"2-2"

},
{

"N":"List of Personal Data Set Lists",
"I":"2-3"

},
{

"N":"List of Personal Library Lists",
"I":"2-4"

}
]

},
{

"PUL":" RefMode",
"CHS":[{

"N":"List Execute",
"I":"3-1"

},
{

"N":"List Retrieve",
"I":"3-2",
"D":"TRUE"

}
]

},
{

"PUL":" Utilities",

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 365

"CHS":[{
"N":"Library",
"I":"4-1"

},
{

"N":"Data set",
"I":"4-2"

},
{

"N":"Move/Copy",
"I":"4-3"

},
{

"N":"Data Set List",
"I":"4-4"

},
{

"N":"Reset Statistics",
"I":"4-5"

},
{

"N":"Hardcopy",
"I":"4-6"

},
{

"N":"Download...",
"I":"4-7"

},
{

"N":"Outlist",
"I":"4-8"

},
{

"N":"Commands...",
"I":"4-9"

},
{

"N":"Reserved",
"I":"4-10",
"D":"TRUE"

},
{

"N":"Format",
"I":"4-11"

},
{

"N":"SuperC",
"I":"4-12"

},
{

"N":"SuperCE",
"I":"4-13"

},
{

"N":"Search-For",
"I":"4-14"

},
{

"N":"Search-ForE",
"I":"4-15"

},
{

"N":"Table Utility",
"I":"4-16"

},
{

"N":"Directory List",

JSON data structures sent from ISPF to client (message type 3)

366 z/OS V2R2 ISPF Services Guide

"I":"4-17"
}

]
},
{

"PUL":" Workstation",
"CHS":[{

"N":"Workstation Tool Integration...",
"I":"5-1"

}
]

},
{

"PUL":" Help",
"CHS":[{

"N":"General",
"I":"6-1"

},
{

"N":"View entry panel",
"I":"6-2"

},
{

"N":"Member selection list",
"I":"6-3"

},
{

"N":"Scrolling data",
"I":"6-4"

},
{

"N":"Types of Data Sets - View",
"I":"6-5"

},
{

"N":"View display screen format",
"I":"6-6"

},
{

"N":"Sequence numbering - View",
"I":"6-7"

},
{

"N":"Display modes - View",
"I":"6-8"

},
{

"N":"Tabbing - View",
"I":"6-9"

},
{

"N":"Automatic recovery - View",
"I":"6-10"

},
{

"N":"Edit profiles",
"I":"6-11"

},
{

"N":"Edit line commands",
"I":"6-12"

},
{

"N":"Edit primary commands",
"I":"6-13"

},
{

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 367

"N":"Labels and line ranges - View",
"I":"6-14"

},
{

"N":"Ending a view session",
"I":"6-15"

},
{

"N":"Types of Data Sets - Browse",
"I":"6-16"

},
{

"N":"Browse display screen format",
"I":"6-17"

},
{

"N":"Assigning Browse labels",
"I":"6-18"

},
{

"N":"Browse commands",
"I":"6-19"

},
{

"N":"Terminating Browse function",
"I":"6-20"

},
{

"N":"Index",
"I":"6-21"

}
]

}
],
"FLD":[{

"T":"T",
"Y":3,
"X":33,
"C":"BLUE",
"I":"LOW",
"L":16,
"D":"View Entry Panel"

},
{

"T":"T",
"Y":5,
"X":2,
"C":"BLUE",
"I":"HIGH",
"L":13,
"D":"ISPF Library:"

},
{

"T":"T",
"Y":6,
"X":5,
"C":"GREEN",
"I":"LOW",
"L":13,
"D":"Project . . ."

},
{

"T":"I",
"A":"SAREA39 ",
"Y":6,
"X":19,
"C":"AQUA",

JSON data structures sent from ISPF to client (message type 3)

368 z/OS V2R2 ISPF Services Guide

"I":"LOW",
"H":"USCORE",
"L":8,
"N":"PRJ1",
"D":""

},
{

"T":"T",
"Y":7,
"X":5,
"C":"GREEN",
"I":"LOW",
"L":13,
"D":"Group"

},
{

"T":"I",
"A":"SAREA39 ",
"Y":7,
"X":19,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":8,
"N":"LIB1",
"D":""

},
{

"T":"T",
"Y":7,
"X":28,
"C":"GREEN",
"I":"LOW",
"L":5,
"D":". . ."

},
{

"T":"I",
"A":"SAREA39 ",
"Y":7,
"X":34,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":8,
"N":"LIB2",
"D":""

},
{

"T":"T",
"Y":7,
"X":43,
"C":"GREEN",
"I":"LOW",
"L":5,
"D":". . ."

},
{

"T":"I",
"A":"SAREA39 ",
"Y":7,
"X":49,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":8,
"N":"LIB3",

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 369

"D":""
},
{

"T":"T",
"Y":7,
"X":58,
"C":"GREEN",
"I":"LOW",
"L":5,
"D":". . ."

},
{

"T":"I",
"A":"SAREA39 ",
"Y":7,
"X":64,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":8,
"N":"LIB4",
"D":""

},
{

"T":"T",
"Y":8,
"X":5,
"C":"GREEN",
"I":"LOW",
"L":13,
"D":"Type"

},
{

"T":"I",
"A":"SAREA39 ",
"Y":8,
"X":19,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":8,
"N":"TYP1",
"D":""

},
{

"T":"T",
"Y":9,
"X":5,
"C":"GREEN",
"I":"LOW",
"L":13,
"D":"Member . . ."

},
{

"T":"I",
"A":"SAREA39 ",
"Y":9,
"X":19,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":8,
"N":"ZMEM",
"D":""

},
{

"T":"T",

JSON data structures sent from ISPF to client (message type 3)

370 z/OS V2R2 ISPF Services Guide

"Y":9,
"X":35,
"C":"GREEN",
"I":"LOW",
"L":44,
"D":"(Blank or pattern for member selection list)"

},
{

"T":"T",
"Y":11,
"X":2,
"C":"BLUE",
"I":"HIGH",
"L":66,
"D":"Other Partitioned, Sequential or VSAM Data Set, or z/OS UNIX file:"

},
{

"T":"T",
"Y":12,
"X":5,
"C":"GREEN",
"I":"LOW",
"L":14,
"D":"Name"

},
{

"T":"I",
"A":"SAREA39 ",
"Y":12,
"X":20,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":56,
"LX":1023,
"N":"ZODSN",
"D":""

},
{

"T":"O",
"A":"SAREA39 ",
"Y":12,
"X":78,
"C":"WHITE",
"I":"LOW",
"L":2,
"N":"ZODSIND",
"D":" +"

},
{

"T":"T",
"Y":13,
"X":5,
"C":"GREEN",
"I":"LOW",
"L":17,
"D":"Volume Serial . ."

},
{

"T":"I",
"A":"SAREA39 ",
"Y":13,
"X":23,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":6,

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 371

"N":"ZVOL",
"D":""

},
{

"T":"T",
"Y":13,
"X":33,
"C":"GREEN",
"I":"LOW",
"L":18,
"D":"(If not cataloged)"

},
{

"T":"T",
"Y":15,
"X":2,
"C":"BLUE",
"I":"HIGH",
"L":17,
"D":"Workstation File:"

},
{

"T":"T",
"Y":16,
"X":5,
"C":"GREEN",
"I":"LOW",
"L":14,
"D":"File Name . ."

},
{

"T":"I",
"A":"SAREA39 ",
"Y":16,
"X":20,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":56,
"N":"WSFN",
"D":""

},
{

"T":"T",
"A":"SAREA39 ",
"Y":17,
"X":42,
"C":"BLUE",
"I":"HIGH",
"L":7,
"D":"Options"

},
{

"T":"T",
"Y":18,
"X":2,
"C":"GREEN",
"I":"LOW",
"L":22,
"D":"Initial Macro"

},
{

"T":"I",
"A":"SAREA39 ",
"Y":18,
"X":25,
"C":"AQUA",

JSON data structures sent from ISPF to client (message type 3)

372 z/OS V2R2 ISPF Services Guide

"I":"LOW",
"H":"USCORE",
"L":8,
"N":"ZVIMAC",
"D":""

},
{

"T":"I",
"A":"SAREA39 ",
"Y":18,
"X":42,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":1,
"N":"ZPCFMCN",
"D":"/",
"SL":{

"T":"CB",
"V":"/"

}
},
{

"T":"T",
"Y":18,
"X":45,
"C":"WHITE",
"I":"LOW",
"L":27,
"D":"Confirm Cancel/Move/Replace"

},
{

"T":"T",
"Y":19,
"X":2,
"C":"GREEN",
"I":"LOW",
"L":22,
"D":"Profile Name"

},
{

"T":"I",
"A":"SAREA39 ",
"Y":19,
"X":25,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":8,
"N":"ZVPROF",
"D":""

},
{

"T":"I",
"A":"SAREA39 ",
"Y":19,
"X":42,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":1,
"N":"VIEWM",
"D":"",
"SL":{

"T":"CB",
"V":"/"

}

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 373

},
{

"T":"T",
"Y":19,
"X":45,
"C":"WHITE",
"I":"LOW",
"L":11,
"D":"Browse Mode"

},
{

"T":"T",
"Y":20,
"X":2,
"C":"GREEN",
"I":"LOW",
"L":22,
"D":"Format Name"

},
{

"T":"I",
"A":"SAREA39 ",
"Y":20,
"X":25,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":8,
"N":"FNAM",
"D":""

},
{

"T":"I",
"A":"SAREA39 ",
"Y":20,
"X":42,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":1,
"N":"ZWSBVE",
"D":"",
"SL":{

"T":"CB",
"V":"/"

}
},
{

"T":"T",
"Y":20,
"X":45,
"C":"WHITE",
"I":"LOW",
"L":19,
"D":"View on Workstation"

},
{

"T":"T",
"Y":21,
"X":2,
"C":"GREEN",
"I":"LOW",
"L":22,
"D":"Data Set Password . ."

},
{

"T":"I",

JSON data structures sent from ISPF to client (message type 3)

374 z/OS V2R2 ISPF Services Guide

"A":"SAREA39 ",
"Y":21,
"X":25,
"C":"AQUA",
"I":"NON",
"H":"USCORE",
"L":8,
"N":"PSWD",
"D":""

},
{

"T":"I",
"A":"SAREA39 ",
"Y":21,
"X":42,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":1,
"N":"ZVWARN",
"D":"/",
"SL":{

"T":"CB",
"V":"/"

}
},
{

"T":"T",
"Y":21,
"X":45,
"C":"WHITE",
"I":"LOW",
"L":25,
"D":"Warn on First Data Change"

},
{

"T":"T",
"Y":22,
"X":2,
"C":"GREEN",
"I":"LOW",
"L":22,
"D":"Record Length"

},
{

"T":"I",
"A":"SAREA39 ",
"Y":22,
"X":25,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":5,
"N":"ZBRECL",
"D":""

},
{

"T":"I",
"A":"SAREA39 ",
"Y":22,
"X":42,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":1,
"N":"MIXM",
"D":"",

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 375

"SL":{
"T":"CB",
"V":"/"

}
},
{

"T":"T",
"Y":22,
"X":45,
"C":"WHITE",
"I":"LOW",
"L":10,
"D":"Mixed Mode"

},
{

"T":"T",
"Y":23,
"X":2,
"C":"GREEN",
"I":"LOW",
"L":22,
"D":"Line Command Table . ."

},
{

"T":"I",
"A":"SAREA39 ",
"Y":23,
"X":25,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":8,
"N":"ZLMAC",
"D":""

},
{

"T":"I",
"A":"SAREA39 ",
"Y":23,
"X":42,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":1,
"N":"ZEDASC",
"D":"",
"SL":{

"T":"CB",
"V":"/"

}
},
{

"T":"T",
"Y":23,
"X":45,
"C":"WHITE",
"I":"LOW",
"L":15,
"D":"View ASCII data"

},
{

"T":"T",
"Y":24,
"X":2,
"C":"GREEN",
"I":"LOW",
"L":12,

JSON data structures sent from ISPF to client (message type 3)

376 z/OS V2R2 ISPF Services Guide

"D":"Command ===>"
},
{

"T":"I",
"Z":"TRUE",
"Y":24,
"X":15,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":65,
"N":"ZCMD",
"D":""

}
],
"KEY":[{

"K":"ENTER",
"N":"ENTER"

},
{

"K":"1",
"N":"Help"

},
{

"K":"2",
"N":"Split"

},
{

"K":"3",
"N":"Exit"

},
{

"K":"7",
"N":"Backward"

},
{

"K":"8",
"N":"Forward"

},
{

"K":"9",
"N":"Swap"

},
{

"K":"10",
"N":"Actions"

},
{

"K":"12",
"N":"Cancel"

}
]

}
}

Here is an example of the JSON for a view display of member ACB in data set
'SYS1.MACLIB'. Language sensitive coloring is enabled through the edit HILITE
command:

{
"PNL":{

"VER":"0100",
"NME":"ISREDDE2",
"SCR":"1",
"SCN":"VIEW",
"HDL":"001806467788",
"RWS":24,

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 377

"CLS":80,
"EDT":"TRUE",
"CML":"BOTTOM",
"CUR":{

"ROW":24,
"CLM":15

},
"SUP":"TRUE",
"SDN":"TRUE",
"SRG":"TRUE",
"IFY":{

"SYS":"",
"UID":""

},
"ARE":[{

"NME":"ZDATA",
"TYP":"D",
"TOP":4,
"BOT":23,
"LFT":1,
"RGT":80

}
],
"CHA":[{

"COL":"PINK",
"HIL":"RVIDEO"

},
{

"COL":"RED"
},
{

"COL":"GREEN"
},
{

"COL":"BLUE"
},
{

"COL":"WHITE"
},
{

"COL":"PINK"
},
{

"COL":"YELLOW"
},
{

"COL":"AQUA"
},
{

"COL":"RED"
},
{

"HIL":"USCORE"
},
{

"COL":"RED"
},
{

"COL":"YELLOW"
},
{

"COL":"WHITE"
},
{

"COL":"AQUA"
},
{

JSON data structures sent from ISPF to client (message type 3)

378 z/OS V2R2 ISPF Services Guide

"COL":"GREEN"
},
{

"COL":"GREEN"
},
{

"COL":"WHITE",
"HIL":"RVIDEO"

},
{

"COL":"WHITE"
}

],
"MNU":[{

"PUL":" File",
"CHS":[{

"N":"Save",
"I":"1-1",
"D":"TRUE"

},
{

"N":"Cancel",
"I":"1-2"

},
{

"N":"Exit",
"I":"1-3"

}
]

},
{

"PUL":" Edit",
"CHS":[{

"N":"Reset",
"I":"2-1"

},
{

"N":"Undo",
"I":"2-2"

},
{

"N":"Hilite",
"I":"2-3"

},
{

"N":"Cut",
"I":"2-4"

},
{

"N":"Paste",
"I":"2-5"

}
]

},
{

"PUL":" Edit_Settings",
"CHS":[{

"N":"Edit settings",
"I":"3-1"

}
]

},
{

"PUL":" Menu",
"CHS":[{

"N":"Settings",
"I":"4-1"

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 379

},
{

"N":"View",
"I":"4-2"

},
{

"N":"Edit",
"I":"4-3"

},
{

"N":"ISPF Command Shell",
"I":"4-4"

},
{

"N":"Dialog Test...",
"I":"4-5"

},
{

"N":"Other IBM Products...",
"I":"4-6"

},
{

"N":"SCLM",
"I":"4-7"

},
{

"N":"ISPF Workplace",
"I":"4-8"

},
{

"N":"Status Area...",
"I":"4-9"

},
{

"N":"Exit",
"I":"4-10"

}
]

},
{

"PUL":" Utilities",
"CHS":[{

"N":"Library",
"I":"5-1"

},
{

"N":"Data set",
"I":"5-2"

},
{

"N":"Move/Copy",
"I":"5-3"

},
{

"N":"Data Set List",
"I":"5-4"

},
{

"N":"Reset Statistics",
"I":"5-5"

},
{

"N":"Hardcopy",
"I":"5-6"

},
{

"N":"Download...",

JSON data structures sent from ISPF to client (message type 3)

380 z/OS V2R2 ISPF Services Guide

"I":"5-7"
},
{

"N":"Outlist",
"I":"5-8"

},
{

"N":"Commands...",
"I":"5-9"

},
{

"N":"Reserved",
"I":"5-10",
"D":"TRUE"

},
{

"N":"Format",
"I":"5-11"

},
{

"N":"SuperC",
"I":"5-12"

},
{

"N":"SuperCE",
"I":"5-13"

},
{

"N":"Search-For",
"I":"5-14"

},
{

"N":"Search-ForE",
"I":"5-15"

},
{

"N":"Table Utility",
"I":"5-16"

},
{

"N":"Directory List",
"I":"5-17"

}
]

},
{

"PUL":" Compilers",
"CHS":[{

"N":"Foreground Compilers",
"I":"6-1"

},
{

"N":"Background Compilers",
"I":"6-2"

},
{

"N":"ISPPREP Panel Utility...",
"I":"6-3"

},
{

"N":"DTL Compiler...",
"I":"6-4"

}
]

},
{

"PUL":" Test",

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 381

"CHS":[{
"N":"Functions...",
"I":"7-1"

},
{

"N":"Panels...",
"I":"7-2"

},
{

"N":"Variables...",
"I":"7-3"

},
{

"N":"Tables...",
"I":"7-4"

},
{

"N":"Log",
"I":"7-5"

},
{

"N":"Services...",
"I":"7-6"

},
{

"N":"Traces...",
"I":"7-7"

},
{

"N":"Break Points...",
"I":"7-8"

},
{

"N":"Dialog Test...",
"I":"7-9"

},
{

"N":"Dialog Test appl ID...",
"I":"7-10"

}
]

},
{

"PUL":" Help",
"CHS":[{

"N":"General",
"I":"8-1"

},
{

"N":"Display screen format",
"I":"8-2"

},
{

"N":"Scrolling data",
"I":"8-3"

},
{

"N":"Sequence numbering",
"I":"8-4"

},
{

"N":"Display modes",
"I":"8-5"

},
{

"N":"Tabbing",
"I":"8-6"

JSON data structures sent from ISPF to client (message type 3)

382 z/OS V2R2 ISPF Services Guide

},
{

"N":"Automatic recovery",
"I":"8-7"

},
{

"N":"Edit profiles",
"I":"8-8"

},
{

"N":"Edit line commands",
"I":"8-9"

},
{

"N":"Edit primary commands",
"I":"8-10"

},
{

"N":"Labels and line ranges",
"I":"8-11"

},
{

"N":"Ending an edit session",
"I":"8-12"

},
{

"N":"Appendices",
"I":"8-13"

},
{

"N":"Index",
"I":"8-14"

}
]

}
],
"FLD":[{

"T":"O",
"Y":3,
"X":2,
"C":"AQUA",
"I":"LOW",
"L":10,
"N":"ZVMODET",
"D":"VIEW "

},
{

"T":"O",
"Y":3,
"X":13,
"C":"AQUA",
"I":"LOW",
"L":47,
"N":"ZTITLE",
"D":"SYS1.MACLIB(ACB) - 01.00 "

},
{

"T":"T",
"Y":3,
"X":61,
"C":"GREEN",
"I":"LOW",
"L":7,
"D":"Columns"

},
{

"T":"O",

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 383

"Y":3,
"X":69,
"C":"AQUA",
"I":"LOW",
"L":5,
"N":"ZCL",
"D":"00001"

},
{

"T":"O",
"Y":3,
"X":75,
"C":"AQUA",
"I":"LOW",
"L":5,
"N":"ZCR",
"D":"00072"

},
{

"T":"I",
"A":"ZDATA ",
"Y":4,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":6,
"N":"ZDATA_0001",
"D":"010833"

},
{

"T":"I",
"A":"ZDATA ",
"Y":4,
"X":9,
"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0002",
"D":".* $LQ=DFSMS,HDZ11C0,043093,SJPLRG: VSAM RLS @LQA ",
"SHS":[{

"STA":1,
"LEN":2,
"ATT":14

},
{

"STA":4,
"LEN":32,
"ATT":14

},
{

"STA":37,
"LEN":4,
"ATT":14

},
{

"STA":42,
"LEN":3,
"ATT":14

},
{

"STA":68,
"LEN":4,
"ATT":14

}
]

},
{

JSON data structures sent from ISPF to client (message type 3)

384 z/OS V2R2 ISPF Services Guide

"T":"I",
"A":"ZDATA ",
"Y":5,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":6,
"N":"ZDATA_0003",
"D":"010999"

},
{

"T":"I",
"A":"ZDATA ",
"Y":5,
"X":9,
"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0004",
"D":".* $VC= DFSMS HDZ11F0 10/26/99 SJPLJRB : REMOVE VSAM CTLG SUPP @VCA ",
"SHS":[{

"STA":1,
"LEN":2,
"ATT":14

},
{

"STA":4,
"LEN":4,
"ATT":14

},
{

"STA":9,
"LEN":5,
"ATT":14

},
{

"STA":16,
"LEN":7,
"ATT":14

},
{

"STA":24,
"LEN":8,
"ATT":14

},
{

"STA":33,
"LEN":7,
"ATT":14

},
{

"STA":42,
"LEN":1,
"ATT":14

},
{

"STA":44,
"LEN":6,
"ATT":14

},
{

"STA":51,
"LEN":4,
"ATT":14

},
{

"STA":56,

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 385

"LEN":4,
"ATT":14

},
{

"STA":61,
"LEN":4,
"ATT":14

},
{

"STA":68,
"LEN":4,
"ATT":14

}
]

},
{

"T":"I",
"A":"ZDATA ",
"Y":6,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":6,
"N":"ZDATA_0005",
"D":"011166"

},
{

"T":"I",
"A":"ZDATA ",
"Y":6,
"X":9,
"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0006",
"D":".**@LQC ",
"SHS":[{

"STA":1,
"LEN":71,
"ATT":14

}
]

},
{

"T":"I",
"A":"ZDATA ",
"Y":7,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":6,
"N":"ZDATA_0007",
"D":"011500"

},
{

"T":"I",
"A":"ZDATA ",
"Y":7,
"X":9,
"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0008",
"D":" AIF (’&AM’ EQ ’VTAM’).VTACB IS IT VTAM ",
"SHS":[{

"STA":10,
"LEN":3,

JSON data structures sent from ISPF to client (message type 3)

386 z/OS V2R2 ISPF Services Guide

"ATT":11
},
{

"STA":16,
"LEN":1,
"ATT":16

},
{

"STA":17,
"LEN":5,
"ATT":13

},
{

"STA":23,
"LEN":2,
"ATT":16

},
{

"STA":26,
"LEN":6,
"ATT":13

},
{

"STA":32,
"LEN":7,
"ATT":16

},
{

"STA":41,
"LEN":2,
"ATT":14

},
{

"STA":44,
"LEN":2,
"ATT":14

},
{

"STA":47,
"LEN":4,
"ATT":14

}
]

},
{

"T":"I",
"A":"ZDATA ",
"Y":8,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":6,
"N":"ZDATA_0009",
"D":"012000"

},
{

"T":"I",
"A":"ZDATA ",
"Y":8,
"X":9,
"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0010",
"D":" AIF (’&AM’ EQ ’VSAM’).VSACB IS IT VSAM ",
"SHS":[{

"STA":10,

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 387

"LEN":3,
"ATT":11

},
{

"STA":16,
"LEN":1,
"ATT":16

},
{

"STA":17,
"LEN":5,
"ATT":13

},
{

"STA":23,
"LEN":2,
"ATT":16

},
{

"STA":26,
"LEN":6,
"ATT":13

},
{

"STA":32,
"LEN":7,
"ATT":16

},
{

"STA":41,
"LEN":2,
"ATT":14

},
{

"STA":44,
"LEN":2,
"ATT":14

},
{

"STA":47,
"LEN":4,
"ATT":14

}
]

},
{

"T":"I",
"A":"ZDATA ",
"Y":9,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":6,
"N":"ZDATA_0011",
"D":"012500"

},
{

"T":"I",
"A":"ZDATA ",
"Y":9,
"X":9,
"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0012",
"D":" AIF (’&AM’ EQ ’’).VSACB IF NULL, DEFAULT VSAM ",
"SHS":[{

JSON data structures sent from ISPF to client (message type 3)

388 z/OS V2R2 ISPF Services Guide

"STA":10,
"LEN":3,
"ATT":11

},
{

"STA":16,
"LEN":1,
"ATT":16

},
{

"STA":17,
"LEN":5,
"ATT":13

},
{

"STA":23,
"LEN":2,
"ATT":16

},
{

"STA":26,
"LEN":2,
"ATT":13

},
{

"STA":28,
"LEN":7,
"ATT":16

},
{

"STA":41,
"LEN":2,
"ATT":14

},
{

"STA":44,
"LEN":5,
"ATT":14

},
{

"STA":50,
"LEN":7,
"ATT":14

},
{

"STA":58,
"LEN":4,
"ATT":14

}
]

},
{

"T":"I",
"A":"ZDATA ",
"Y":10,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":6,
"N":"ZDATA_0013",
"D":"013000"

},
{

"T":"I",
"A":"ZDATA ",
"Y":10,
"X":9,

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 389

"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0014",
"D":".* ",
"SHS":[{

"STA":1,
"LEN":2,
"ATT":14

}
]

},
{

"T":"I",
"A":"ZDATA ",
"Y":11,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":6,
"N":"ZDATA_0015",
"D":"013500"

},
{

"T":"I",
"A":"ZDATA ",
"Y":11,
"X":9,
"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0016",
"D":" IDAERMAC 3,AM,&AM ISSUE ERROR MSG @L9C ",
"SHS":[{

"STA":10,
"LEN":8,
"ATT":11

},
{

"STA":20,
"LEN":1,
"ATT":16

},
{

"STA":22,
"LEN":2,
"ATT":16

},
{

"STA":26,
"LEN":2,
"ATT":16

},
{

"STA":41,
"LEN":5,
"ATT":14

},
{

"STA":47,
"LEN":5,
"ATT":14

},
{

"STA":53,
"LEN":3,
"ATT":14

JSON data structures sent from ISPF to client (message type 3)

390 z/OS V2R2 ISPF Services Guide

},
{

"STA":68,
"LEN":4,
"ATT":14

}
]

},
{

"T":"I",
"A":"ZDATA ",
"Y":12,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":6,
"N":"ZDATA_0017",
"D":"014000"

},
{

"T":"I",
"A":"ZDATA ",
"Y":12,
"X":9,
"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0018",
"D":" MEXIT ",
"SHS":[{

"STA":10,
"LEN":5,
"ATT":11

}
]

},
{

"T":"I",
"A":"ZDATA ",
"Y":13,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":6,
"N":"ZDATA_0019",
"D":"014500"

},
{

"T":"I",
"A":"ZDATA ",
"Y":13,
"X":9,
"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0020",
"D":".* ",
"SHS":[{

"STA":1,
"LEN":2,
"ATT":14

}
]

},
{

"T":"I",
"A":"ZDATA ",

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 391

"Y":14,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":6,
"N":"ZDATA_0021",
"D":"015000"

},
{

"T":"I",
"A":"ZDATA ",
"Y":14,
"X":9,
"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0022",
"D":".VTACB ANOP ",
"SHS":[{

"STA":1,
"LEN":6,
"ATT":16

},
{

"STA":10,
"LEN":4,
"ATT":11

}
]

},
{

"T":"I",
"A":"ZDATA ",
"Y":15,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":6,
"N":"ZDATA_0023",
"D":"015500"

},
{

"T":"I",
"A":"ZDATA ",
"Y":15,
"X":9,
"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0024",
"D":"&:NAME ISTACB1 DDNAME=&:DDNAME,EXLST=&:EXLST, -",
"SHS":[{

"STA":1,
"LEN":5,
"ATT":16

},
{

"STA":10,
"LEN":7,
"ATT":11

},
{

"STA":18,
"LEN":6,
"ATT":16

},
{

JSON data structures sent from ISPF to client (message type 3)

392 z/OS V2R2 ISPF Services Guide

"STA":26,
"LEN":6,
"ATT":16

},
{

"STA":33,
"LEN":5,
"ATT":16

},
{

"STA":40,
"LEN":5,
"ATT":16

},
{

"STA":72,
"LEN":1,
"ATT":14

}
]

},
{

"T":"I",
"A":"ZDATA ",
"Y":16,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":6,
"N":"ZDATA_0025",
"D":"016000"

},
{

"T":"I",
"A":"ZDATA ",
"Y":16,
"X":9,
"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0026",
"D":" MACRF=&:MACRF,JFCB=&:JFCB,BUFND=&:BUFND, -",
"SHS":[{

"STA":16,
"LEN":5,
"ATT":16

},
{

"STA":23,
"LEN":5,
"ATT":16

},
{

"STA":29,
"LEN":4,
"ATT":16

},
{

"STA":35,
"LEN":4,
"ATT":16

},
{

"STA":40,
"LEN":5,
"ATT":16

},

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 393

{
"STA":47,
"LEN":5,
"ATT":16

},
{

"STA":72,
"LEN":1,
"ATT":14

}
]

},
{

"T":"I",
"A":"ZDATA ",
"Y":17,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":6,
"N":"ZDATA_0027",
"D":"016500"

},
{

"T":"I",
"A":"ZDATA ",
"Y":17,
"X":9,
"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0028",
"D":" BUFNI=&:BUFNI,PASSWD=&:PASSWD, -",
"SHS":[{

"STA":16,
"LEN":5,
"ATT":16

},
{

"STA":23,
"LEN":5,
"ATT":16

},
{

"STA":29,
"LEN":6,
"ATT":16

},
{

"STA":37,
"LEN":6,
"ATT":16

},
{

"STA":72,
"LEN":1,
"ATT":14

}
]

},
{

"T":"I",
"A":"ZDATA ",
"Y":18,
"X":2,
"C":"BLUE",
"I":"LOW",

JSON data structures sent from ISPF to client (message type 3)

394 z/OS V2R2 ISPF Services Guide

"L":6,
"N":"ZDATA_0029",
"D":"017000"

},
{

"T":"I",
"A":"ZDATA ",
"Y":18,
"X":9,
"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0030",
"D":" BLKSIZE=&:BLKSIZE,LRECL=&:LRECL, -",
"SHS":[{

"STA":16,
"LEN":7,
"ATT":16

},
{

"STA":25,
"LEN":7,
"ATT":16

},
{

"STA":33,
"LEN":5,
"ATT":16

},
{

"STA":40,
"LEN":5,
"ATT":16

},
{

"STA":72,
"LEN":1,
"ATT":14

}
]

},
{

"T":"I",
"A":"ZDATA ",
"Y":19,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":6,
"N":"ZDATA_0031",
"D":"017500"

},
{

"T":"I",
"A":"ZDATA ",
"Y":19,
"X":9,
"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0032",
"D":" BUFSP=&:BUFSP,CCTYPE=&:CCTYPE, -",
"SHS":[{

"STA":16,
"LEN":5,
"ATT":16

},

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 395

{
"STA":23,
"LEN":5,
"ATT":16

},
{

"STA":29,
"LEN":6,
"ATT":16

},
{

"STA":37,
"LEN":6,
"ATT":16

},
{

"STA":72,
"LEN":1,
"ATT":14

}
]

},
{

"T":"I",
"A":"ZDATA ",
"Y":20,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":6,
"N":"ZDATA_0033",
"D":"018000"

},
{

"T":"I",
"A":"ZDATA ",
"Y":20,
"X":9,
"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0034",
"D":" STRNO=&:STRNO,CATALOG=&:CATALOG, -",
"SHS":[{

"STA":16,
"LEN":5,
"ATT":16

},
{

"STA":23,
"LEN":5,
"ATT":16

},
{

"STA":29,
"LEN":7,
"ATT":16

},
{

"STA":38,
"LEN":7,
"ATT":16

},
{

"STA":72,
"LEN":1,
"ATT":14

JSON data structures sent from ISPF to client (message type 3)

396 z/OS V2R2 ISPF Services Guide

}
]

},
{

"T":"I",
"A":"ZDATA ",
"Y":21,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":6,
"N":"ZDATA_0035",
"D":"018500"

},
{

"T":"I",
"A":"ZDATA ",
"Y":21,
"X":9,
"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0036",
"D":" BSTRNO=&:BSTRNO,MAREA=&:MAREA,MLEN=&:MLEN, -",
"SHS":[{

"STA":16,
"LEN":6,
"ATT":16

},
{

"STA":24,
"LEN":6,
"ATT":16

},
{

"STA":31,
"LEN":5,
"ATT":16

},
{

"STA":38,
"LEN":5,
"ATT":16

},
{

"STA":44,
"LEN":4,
"ATT":16

},
{

"STA":50,
"LEN":4,
"ATT":16

},
{

"STA":72,
"LEN":1,
"ATT":14

}
]

},
{

"T":"I",
"A":"ZDATA ",
"Y":22,
"X":2,
"C":"BLUE",

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 397

"I":"LOW",
"L":6,
"N":"ZDATA_0037",
"D":"019000"

},
{

"T":"I",
"A":"ZDATA ",
"Y":22,
"X":9,
"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0038",
"D":" CRA=&:CRA,AM=&AM,APPLID=&:APPLID, -",
"SHS":[{

"STA":16,
"LEN":3,
"ATT":16

},
{

"STA":21,
"LEN":3,
"ATT":16

},
{

"STA":25,
"LEN":2,
"ATT":16

},
{

"STA":29,
"LEN":2,
"ATT":16

},
{

"STA":32,
"LEN":6,
"ATT":16

},
{

"STA":40,
"LEN":6,
"ATT":16

},
{

"STA":72,
"LEN":1,
"ATT":14

}
]

},
{

"T":"I",
"A":"ZDATA ",
"Y":23,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":6,
"N":"ZDATA_0039",
"D":"019500"

},
{

"T":"I",
"A":"ZDATA ",
"Y":23,

JSON data structures sent from ISPF to client (message type 3)

398 z/OS V2R2 ISPF Services Guide

"X":9,
"C":"YELLOW",
"I":"LOW",
"L":72,
"N":"ZDATA_0040",
"D":" USERPTR=&:USERPTR, -",
"SHS":[{

"STA":16,
"LEN":7,
"ATT":16

},
{

"STA":25,
"LEN":7,
"ATT":16

},
{

"STA":72,
"LEN":1,
"ATT":14

}
]

},
{

"T":"T",
"Y":24,
"X":2,
"C":"GREEN",
"I":"LOW",
"L":12,
"D":"Command ===>"

},
{

"T":"I",
"Z":"TRUE",
"Y":24,
"X":15,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":48,
"N":"ZCMD",
"D":""

},
{

"T":"T",
"Y":24,
"X":64,
"C":"GREEN",
"I":"LOW",
"L":11,
"D":"Scroll ===>"

},
{

"T":"I",
"Y":24,
"X":76,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":4,
"N":"ZSCED",
"D":"PAGE"

}
],
"KEY":[{

"K":"ENTER",

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 399

"N":"ENTER"
},
{

"K":"1",
"N":"Help"

},
{

"K":"2",
"N":"Split"

},
{

"K":"3",
"N":"Exit"

},
{

"K":"5",
"N":"Rfind"

},
{

"K":"6",
"N":"Rchange"

},
{

"K":"7",
"N":"Up"

},
{

"K":"8",
"N":"Down"

},
{

"K":"9",
"N":"Swap"

},
{

"K":"10",
"N":"Left"

},
{

"K":"11",
"N":"Right"

},
{

"K":"12",
"N":"Cancel"

}
]

}
}

Here is an example of the JSON for a data set list display when the attribute view
is selected and SYS1.DGT* is specified for the Dsname Level:

{
"PNL":{

"VER":"0100",
"NME":"ISRUDSL0",
"SCR":"1",
"SCN":"DSLIST",
"HDL":"000422895556",
"RWS":24,
"CLS":80,
"CML":"BOTTOM",
"CUR":{

"ROW":24,
"CLM":15

},

JSON data structures sent from ISPF to client (message type 3)

400 z/OS V2R2 ISPF Services Guide

"SLF":"TRUE",
"SRG":"TRUE",
"IFY":{

"SYS":"",
"UID":""

},
"ARE":[{

"NME":"ZDATA",
"TYP":"D",
"TOP":5,
"BOT":23,
"LFT":1,
"RGT":80

}
],
"MNU":[{

"PUL":" Menu",
"CHS":[{

"N":"Settings",
"I":"1-1"

},
{

"N":"View",
"I":"1-2"

},
{

"N":"Edit",
"I":"1-3"

},
{

"N":"ISPF Command Shell",
"I":"1-4"

},
{

"N":"Dialog Test...",
"I":"1-5"

},
{

"N":"Other IBM Products...",
"I":"1-6"

},
{

"N":"SCLM",
"I":"1-7"

},
{

"N":"ISPF Workplace",
"I":"1-8"

},
{

"N":"Status Area...",
"I":"1-9"

},
{

"N":"Exit",
"I":"1-10"

}
]

},
{

"PUL":" Options",
"CHS":[{

"N":"DSLIST Settings...",
"I":"2-1"

},
{

"N":"Refresh List",

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 401

"I":"2-2"
},
{

"N":"Append to List...",
"I":"2-3"

},
{

"N":"Save List",
"I":"2-4"

},
{

"N":"Reset",
"I":"2-5"

}
]

},
{

"PUL":" View",
"CHS":[{

"N":"Volume",
"I":"3-1"

},
{

"N":"Space",
"I":"3-2"

},
{

"N":"Attributes",
"I":"3-3",
"D":"TRUE"

},
{

"N":"Total",
"I":"3-4"

},
{

"N":"Sort...",
"I":"3-5"

}
]

},
{

"PUL":" Utilities",
"CHS":[{

"N":"Library",
"I":"4-1"

},
{

"N":"Data set",
"I":"4-2"

},
{

"N":"Move/Copy",
"I":"4-3"

},
{

"N":"Data Set List",
"I":"4-4"

},
{

"N":"Reset Statistics",
"I":"4-5"

},
{

"N":"Hardcopy",
"I":"4-6"

},

JSON data structures sent from ISPF to client (message type 3)

402 z/OS V2R2 ISPF Services Guide

{
"N":"Download...",
"I":"4-7"

},
{

"N":"Outlist",
"I":"4-8"

},
{

"N":"Commands...",
"I":"4-9"

},
{

"N":"Reserved",
"I":"4-10",
"D":"TRUE"

},
{

"N":"Format",
"I":"4-11"

},
{

"N":"SuperC",
"I":"4-12"

},
{

"N":"SuperCE",
"I":"4-13"

},
{

"N":"Search-For",
"I":"4-14"

},
{

"N":"Search-ForE",
"I":"4-15"

},
{

"N":"Table Utility",
"I":"4-16"

},
{

"N":"Directory List",
"I":"4-17"

}
]

},
{

"PUL":" Compilers",
"CHS":[{

"N":"Foreground Compilers",
"I":"5-1"

},
{

"N":"Background Compilers",
"I":"5-2"

},
{

"N":"ISPPREP Panel Utility...",
"I":"5-3"

},
{

"N":"DTL Compiler...",
"I":"5-4"

}
]

},

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 403

{
"PUL":" Help",
"CHS":[{

"N":"General",
"I":"6-1"

},
{

"N":"Description of ISPF supplied line commands",
"I":"6-2"

},
{

"N":"Description of the block command",
"I":"6-3"

},
{

"N":"Using the \"/\" character to represent a quoted Data Set name",
"I":"6-4"

},
{

"N":"Format of the displayed list",
"I":"6-5"

},
{

"N":"Available primary commands when the list is displayed",
"I":"6-6"

},
{

"N":"Appendices",
"I":"6-7"

},
{

"N":"Index",
"I":"6-8"

}
]

}
],
"FLD":[{

"T":"O",
"Y":3,
"X":2,
"C":"AQUA",
"I":"LOW",
"L":78,
"N":"ZDLTITLE",
"D":"DSLIST - Data Sets Matching SYS1.DGT* Row 1 of 9"

},
{

"T":"T",
"A":"ZDATA ",
"Y":5,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":36,
"D":"Command - Enter \"/\" to select action"

},
{

"T":"T",
"A":"ZDATA ",
"Y":5,
"X":51,
"C":"AQUA",
"I":"LOW",
"L":30,
"D":" Dsorg Recfm Lrecl Blksz"

},

JSON data structures sent from ISPF to client (message type 3)

404 z/OS V2R2 ISPF Services Guide

{
"T":"T",
"A":"ZDATA ",
"Y":6,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":79,
"D":"---"

},
{

"T":"I",
"A":"ZDATA ",
"Y":7,
"X":2,
"C":"GREEN",
"I":"LOW",
"L":53,
"N":"ZDATA_8788",
"D":" SYS1.DGTCLIB "

},
{

"T":"T",
"A":"ZDATA ",
"Y":7,
"X":56,
"C":"AQUA",
"I":"LOW",
"L":25,
"D":"PO FB 80 27920"

},
{

"T":"I",
"A":"ZDATA ",
"Y":8,
"X":2,
"C":"GREEN",
"I":"LOW",
"L":53,
"N":"ZDATA_8786",
"D":" SYS1.DGTLLIB "

},
{

"T":"T",
"A":"ZDATA ",
"Y":8,
"X":56,
"C":"AQUA",
"I":"LOW",
"L":25,
"D":"PO U 0 32760"

},
{

"T":"I",
"A":"ZDATA ",
"Y":9,
"X":2,
"C":"GREEN",
"I":"LOW",
"L":53,
"N":"ZDATA_8784",
"D":" SYS1.DGTMKLB "

},
{

"T":"T",
"A":"ZDATA ",
"Y":9,

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 405

"X":56,
"C":"AQUA",
"I":"LOW",
"L":25,
"D":"PO FB 80 27920"

},
{

"T":"I",
"A":"ZDATA ",
"Y":10,
"X":2,
"C":"GREEN",
"I":"LOW",
"L":53,
"N":"ZDATA_8782",
"D":" SYS1.DGTMLIB "

},
{

"T":"T",
"A":"ZDATA ",
"Y":10,
"X":56,
"C":"AQUA",
"I":"LOW",
"L":25,
"D":"PO FB 80 27920"

},
{

"T":"I",
"A":"ZDATA ",
"Y":11,
"X":2,
"C":"GREEN",
"I":"LOW",
"L":53,
"N":"ZDATA_8780",
"D":" SYS1.DGTPKLB "

},
{

"T":"T",
"A":"ZDATA ",
"Y":11,
"X":56,
"C":"AQUA",
"I":"LOW",
"L":25,
"D":"PO FB 80 27920"

},
{

"T":"I",
"A":"ZDATA ",
"Y":12,
"X":2,
"C":"GREEN",
"I":"LOW",
"L":53,
"N":"ZDATA_8778",
"D":" SYS1.DGTPLIB "

},
{

"T":"T",
"A":"ZDATA ",
"Y":12,
"X":56,
"C":"AQUA",
"I":"LOW",
"L":25,

JSON data structures sent from ISPF to client (message type 3)

406 z/OS V2R2 ISPF Services Guide

"D":"PO FB 80 27920"
},
{

"T":"I",
"A":"ZDATA ",
"Y":13,
"X":2,
"C":"GREEN",
"I":"LOW",
"L":53,
"N":"ZDATA_8776",
"D":" SYS1.DGTSKLB "

},
{

"T":"T",
"A":"ZDATA ",
"Y":13,
"X":56,
"C":"AQUA",
"I":"LOW",
"L":25,
"D":"PO FB 80 27920"

},
{

"T":"I",
"A":"ZDATA ",
"Y":14,
"X":2,
"C":"GREEN",
"I":"LOW",
"L":53,
"N":"ZDATA_8774",
"D":" SYS1.DGTSLIB "

},
{

"T":"T",
"A":"ZDATA ",
"Y":14,
"X":56,
"C":"AQUA",
"I":"LOW",
"L":25,
"D":"PO FB 80 27920"

},
{

"T":"I",
"A":"ZDATA ",
"Y":15,
"X":2,
"C":"GREEN",
"I":"LOW",
"L":53,
"N":"ZDATA_8772",
"D":" SYS1.DGTTLIB "

},
{

"T":"T",
"A":"ZDATA ",
"Y":15,
"X":56,
"C":"AQUA",
"I":"LOW",
"L":25,
"D":"PO FB 80 27920"

},
{

"T":"T",

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 407

"A":"ZDATA ",
"Y":16,
"X":2,
"C":"BLUE",
"I":"LOW",
"L":79,
"D":"***************************** End of Data Set list ****************************"

},
{

"T":"T",
"Y":24,
"X":2,
"C":"GREEN",
"I":"LOW",
"L":12,
"D":"Command ===>"

},
{

"T":"I",
"Z":"TRUE",
"Y":24,
"X":15,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":48,
"N":"ZCMD",
"D":""

},
{

"T":"T",
"Y":24,
"X":64,
"C":"GREEN",
"I":"LOW",
"L":11,
"D":"Scroll ===>"

},
{

"T":"I",
"Y":24,
"X":76,
"C":"AQUA",
"I":"LOW",
"H":"USCORE",
"L":4,
"N":"ZUSC",
"D":"PAGE"

}
],
"KEY":[{

"K":"ENTER",
"N":"ENTER"

},
{

"K":"1",
"N":"Help"

},
{

"K":"2",
"N":"Split"

},
{

"K":"3",
"N":"Exit"

},
{

JSON data structures sent from ISPF to client (message type 3)

408 z/OS V2R2 ISPF Services Guide

"K":"5",
"N":"Rfind"

},
{

"K":"7",
"N":"Up"

},
{

"K":"8",
"N":"Down"

},
{

"K":"9",
"N":"Swap"

},
{

"K":"10",
"N":"Left"

},
{

"K":"11",
"N":"Right"

},
{

"K":"12",
"N":"Cancel"

}
]

}
}

ISPF action JSON
The following schema describes the JSON data structure used to indicate an action
by ISPF:

{
"ACTION":{

"description":"The signal of an action by ISPF - EXIT=one or more ISPF logical
screens has been exited",
"type":"string",
"enum":["EXIT"],
"required":true

},
"SCR":{

"description":"For an EXIT action request, a list of identifiers for each ISPF
logical screen that has been exited",
"type":"array",
"items":{

"description":"The identifier for the ISPF logical screen that has been exited",
"type":"string",
"maxLength":1

}
}

}

ISPF action JSON example
Here is an example of the JSON to indicate that the user has exited the third
logical screen for their ISPF session:
{

"ACTION":"EXIT",
"SCR":["3"]

}

JSON data structures sent from ISPF to client (message type 3)

Appendix A. JSON API 409

JSON data structures sent from client to TSO (message type 7)

TSO user response JSON
The following schema describes the JSON data structure for a user response to a
TSO message:
{

"TSO RESPONSE":{
"description":"TSO message response from the client",
"type":"object",
"properties":{

"VER":{
"description":"TSO response JSON version identifier",
"type":"string",
"maxLength":4,
"required":true

},
"DATA":{

"description":"response text",
"type":"string",
"maxLength":32767

}
}

}
}

TSO user response JSON example
The following example shows the JSON when the user enters a response required
by TSO when the command LISTCAT LVL is issued:
{

"TSO RESPONSE":{
"VERSION":"0100",
"DATA":"sys1.parmlib"

}
}

TSO action request JSON
The following schema describes the JSON data structure for a request for action by
TSO:
{

"TSO RESPONSE":{
"description":"TSO action request from the client",
"type":"object",
"properties":{

"VER":{
"description":"TSO response JSON version identifier",
"type":"string",
"maxLength":4,
"required":true

},
"ACTION":{

"description":"action request text - ATTN=attention request",
"type":"string",
"enum":["ATTN"]

}
}

}
}

JSON data structures sent from client to TSO (message type 7)

410 z/OS V2R2 ISPF Services Guide

TSO action request JSON example
The following example shows the JSON when the user issues an attention request:
{

"TSO RESPONSE":{
"VERSION":"0100",
"ACTION":"ATTN"

}
}

JSON data structures sent from client to ISPF (message type 8)

User response JSON
The following schema describes the JSON data structure for a user response to an
ISPF panel display:

{
"PANEL":{

"description":"User response to an ISPF panel display",
"type":"object",
"properties":{

"SCREENID":{
"description":"ISPF logical screen identifier",
"type":"string",
"maxLength":1,
"required":true

},
"NAME":{

"description":"Panel name",
"type":"string",
"maxLength":8,
"required":true

},
"RESPONSE":{

"description":"The form of the response made by the user",
"type":"object",
"required":true,
"properties":{

"TYPE":{
"description":"The response type - CHOICE=pull-down choice,
CMD=command from the client, KEY=function key, PS=point-and-shoot field",
"type":"string",
"enum":["CHOICE","CMD","KEY","PS"],
"required":true

},
"ID":{

"description":"The response qualification - pull-down choice identifier,
command string, function key identifier, or point-and-shoot field name",
"type":"string",
"required":true

}
}

},
"CURSOR":{

"description":"The location on the panel where the user has placed the cursor",
"type":"object",
"required":true,
"properties":{

"ROW":{
"description":"The number of the panel row the cursor is on",
"type":"integer",
"maximum":204,
"required":true

},

JSON data structures sent from client to TSO (message type 7)

Appendix A. JSON API 411

"COLUMN":{
"description":"The number of the panel column the cursor is on",
"type":"integer",
"maximum":160,
"required":true

}
}

},
"FIELDS":{

"description":"The panel fields that have been modified by the user",
"type":"array",
"items":{

"NAME":{
"description":"The name associated with the field",
"type":"string",
"maxLength":14

},
"DATA":{

"description":"The updated data for the field",
"type":"string",
"maxLength":32767

}
}

}
}

}
}

User response JSON examples
The following example shows the JSON when the user selects the View
point-and-shoot field for option 1 on the ISPF primary options menu:
{

"PANEL":{
"SCREENID":"1",
"NAME":"ISR@PRIM",
"RESPONSE":{

"TYPE":"PS",
"ID":"0PS-7-5"

},
"CURSOR":{

"ROW":6,
"COLUMN":5

}
}

}

The following example shows the JSON when the View entry panel (ISPF option 1)
is displayed and the user types 'sys1.maclib(abend)' in the Other Data Set Name
field, selects the Browse Mode option, and presses the Enter key:
{

"PANEL":{
"SCREENID":"1",
"NAME":"ISRBRO01",
"RESPONSE":{

"TYPE":"KEY",
"ID":"ENTER"

},
"CURSOR":{

"ROW":19,
"COLUMN":42

},
"FIELDS":[{

"NAME":"ZODSN",
"DATA":"’sys1.maclib(abend)’"

},

JSON data structures sent from client to ISPF (message type 8)

412 z/OS V2R2 ISPF Services Guide

{
"NAME":"VIEWM",
"DATA":"/"

}
]

}
}

The following example shows the JSON when the user defines a new data set
using the ISPF Data Set Utility function (ISPF option 3.2):
{

"PANEL":{
"SCREENID":"1",
"NAME":"ISRUAASE",
"RESPONSE":{

"TYPE":"KEY",
"ID":"ENTER"

},
"CURSOR":{

"ROW":21,
"COLUMN":28

},
"FIELDS":[{

"NAME":"ZALMC",
"DATA":""

},
{

"NAME":"ZALSPAC",
"DATA":"trks"

},
{

"NAME":"ZAL1EX",
"DATA":"10"

},
{

"NAME":"ZAL2EX",
"DATA":"2"

},
{

"NAME":"ZALDIR",
"DATA":"10"

},
{

"NAME":"ZALRF",
"DATA":"fb"

},
{

"NAME":"ZALLREC",
"DATA":"80"

},
{

"NAME":"ZALBLK",
"DATA":"27920"

},
{

"NAME":"ZALDSNT",
"DATA":"pds"

}
]

}
}

Client action JSON
The following schema describes the JSON data structure for a request from the
client for an action from ISPF:

JSON data structures sent from client to ISPF (message type 8)

Appendix A. JSON API 413

{
"ACTION":{

"description":"An action request from the client - ATTN=attention
interrupt request, EXIT=request to exit one or more ISPF screens,
FORCETERM=terminate ISPF",
"type":"string",
"enum":["ATTN","EXIT","FORCETERM"],
"required":true

},
"SCR":{

"description":"For an EXIT action request, a list of identifiers for each ISPF
logical screen to be exited",
"type":"array",
"items":{

"description":"The identifier for the ISPF logical screen to be exited",
"type":"string",
"maxLength":1

}
}

}

Client action JSON examples
The following example shows the JSON when the client requests ISPF process an
attention request:
{

"ACTION":"ATTN"
}

The following example shows the JSON when the client requests the exit of 3 ISPF
logical screens with identifier 1, 2, and 3:
{

"ACTION":"EXIT",
"SCR":["1",

"2",
"3"

]
}

ISPF variables
The ISPF variables shown in Table 11 are used to indicate to an application that
ISPF is running on behalf of a client and to allow the application to provide
information to the client to help process the application's panels.

Table 11. ISPF variables used to indicate ISPF is running on behalf of a client

Variable name Description

ZGUI If ISPF is invoked by a client, the variable ZGUI has a value of
CLIENT.

ZCLIENT If ISPF is communicating with a client using JSON data structures,
variable ZCLIENT has a value of JSON.

ZDYNSCR When about to display a panel with a dynamic area that can be
scrolled, the application can set the value of this variable to indicate
whether the dynamic area can be scrolled up, down, left, or right on
the next display. The variable value must be 4 bytes:
Byte 1 Set to Y when the area can be scrolled up.
Byte 2 Set to Y when the area can be scrolled down.
Byte 3 Set to Y when the area can be scrolled left.
Byte 4 Set to Y when the area can be scrolled right.

JSON data structures sent from client to ISPF (message type 8)

414 z/OS V2R2 ISPF Services Guide

Table 11. ISPF variables used to indicate ISPF is running on behalf of a client (continued)

Variable name Description

ZTBLSCR When about to issue a table display and the application is using a
variable model line to dynamically build the display area for the table
rows, the application can set the value of this variable to indicate
whether the table display can be scrolled up, down, left, or right on the
next display. The variable value must be 4 bytes:
Byte 1 Set to Y when the table can be scrolled up.
Byte 2 Set to Y when the table can be scrolled down.
Byte 3 Set to Y when the table can be scrolled left.
Byte 4 Set to Y when the table can be scrolled right.

ISPF variables

Appendix A. JSON API 415

ISPF variables

416 z/OS V2R2 ISPF Services Guide

Appendix B. Accessibility

Accessible publications for this product are offered through IBM Knowledge
Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a
detailed message to the "Contact us" web page for z/OS (http://www.ibm.com/
systems/z/os/zos/webqs.html) or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS V2R2 ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out

© Copyright IBM Corp. 1980, 2015 417

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html

punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* * FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the

418 z/OS V2R2 ISPF Services Guide

default option for the FILE keyword. In the example, if you include the FILE
keyword, but do not specify an option, the default option KEEP is applied. A
default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix B. Accessibility 419

420 z/OS V2R2 ISPF Services Guide

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1980, 2015 421

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

422 z/OS V2R2 ISPF Services Guide

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming Interface Information
This publication primarily documents information that is NOT intended to be used
as Programming Interfaces of ISPF.

This publication also documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of ISPF. This information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:
+---------------------Programming Interface information----------------------+

+------------------End of Programming Interface information------------------+

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at www.ibm.com/legal/
copytrade.shtml (http://www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 423

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Trademarks

424 z/OS V2R2 ISPF Services Guide

Index

Special characters
% sign

beginning a command with 37, 213
& (ampersand)

in a variable name 4
symbolic variables 7

A
abbreviated (generic) search

argument 279
abend 39
accessibility 417

contact IBM 417
features 417

accessing skeleton files (FTOPEN) 88
adding a member to a data set or

library 147
adding a row to a table (TBADD) 222
ADDPOP parameter 213
ADDPOP service

description 15, 23
example 24
relation to control service 36
return codes 24

APL2
cannot use ISPLINK call 5
character-vector 9
example 10
general call format 9
interface with ISPF 9
lastrc variable 13

application commands, definition 259
ASIS parameter

on VGET service 311
assembler

example 12
general call format 11

Assembler language, VL keyword 8
assistive technologies 417
attention exits (CLIST) 4
ATTN statement 4
audit trail

in EDIF recovery mode 58, 321
in EDIT recovery mode 66
in VIEW recovery mode 314

automatic and non-automatic entry into
line mode 37, 213

AUTOSEL (auto-selection)
call parameters description 237
command procedure description 237

AUTOSEL control variable, use with
TBDISPL 242

B
BARRIER keyword 213
BKGRND 337
BRIF service, description 25
Browse Interface service 25

BROWSE service
description 18, 30
recursive use 30

buf-len 338, 339
buffer 338, 339

C
C

example 11
general call format 11

call
general format 5, 8
positional parameters 5

call interfaces
ISPEXEC 3, 7
ISPLINK 5

call invocation
basic interfaces 5
general call format

APL2 9
COBOL 5, 10
FORTRAN 8
ISPLINK 13
Pascal 8, 9
PL/I 5, 10

parameters
as symbolic variables 7
omitting 5
positional 5, 8
types of 6

CALL ISPEXEC interface 7
CALL ISPLINK interface 5
CANCEL mode, effect on error

processing 14
change row in table

TBMOD 265
TBPUT 269

character_set 337
character-vector 9
clear table variables to nulls

(TBVCLEAR) 294
CLIST

attention exits 4
variables, used in command

invocation 4
close and save table (TBCLOSE) 226
close table without saving (TBEND) 260
closing a data set 115
COBOL

call format using ISPEXEC 7
example 5, 10
general call format 5
high-order bit generation 6
literals

in assignment statements 11
in call statements, not allowed 11

return codes from services 13, 14, 15
RETURN-CODE built-in variable 13

codepage 337

coding requests for services
keyword parameter 6
numeric value parameter 6
service name parameter 6

column of a table, defining 18
command call

general format 3
positional parameters 4

command invocation
CLIST variables 3
dialog variables as parameters 5
general format 3
ISPEXEC command 3
Option 7.6, Dialog Services 3
parameter conventions 3
return codes 13
variables 4

command routines and I/O, return codes
from 15

commands
reading syntax diagrams xi

commands, definition of application 259
compressing a data set 116
COND keyword on SETMSG 16
contact

z/OS 417
CONTROL service

ADDPOP/REMPOP service
relation 36

description 20, 34
example 42

copying
a variable (VCOPY) 296
members of a data set 117
variables to a shared pool or profile

pool (VPUT) 331
create a new table (TBCREATE) 229
creating a member list 152, 170
CRP, movement of

TBBOTTOM 225
TBDISPL 236
TBSCAN 279
TBSKIP 284
TBTOP 293

CSRROW (.CSRROW) control
variable 242

D
data id

definition of 142
generating 142

Data Set Display Service 121
Data Set Information Dialog Service,

DSINFO 55
Data Set Information Panel, data set list

dialog 121
data structures, JSON 341, 343, 410, 411
DBCS

defining search argument 280
sort sequence 287

© Copyright IBM Corp. 1980, 2015 425

DBCS considerations
LMGET 139
LMPUT 191

ddname interface 33, 70, 318
define function variable (VDEFINE) 298
delete (set to nulls) table values

(TBVCLEAR) 294
Delete option of LMMDISP 163
delete row from table (TBDELETE) 232
delete, a table (TBERASE) 261
dialog

example 252
service description 2, 23

dialog function, example 252
DIRLIST service

description 43
DISPLAY environment

EDIT service 66
VIEW service 314

DISPLAY service
description 15, 48
example 53

display services 15
distributed editing 67
DSINFO 55

E
EDIF service

description of 58
recovery mode 58, 321

EDIREC service, description of 65
Edit interface service 58
edit macros, ISPF/PDF services in 1
Edit profile 215
edit recovery

VIEW service 314
edit recovery table

initialization of 65, 75
scanning for pending recovery 65, 76

EDIT service
description 18, 66
recovery mode 66
recursive use 66
running in a pop-up window 67

edit, distributed 67
EDREC service

CANCEL option 77
DEFER option 77
description 18, 74
INIT option 75
PROCESS option 77
QUERY option 76

ending, file tailoring (FTCLOSE) 83
ENQ issued by TBOPEN 267
erase (set to nulls) table variables

(TBVCLEAR) 294
erase a table (TBERASE) 261
erasing

member of file tailoring output library
(FTERASE) 85

variables from shared or profile pool
(VDELETE) 309

erasing a data set 133
error modes (return code of 12 or higher)

CANCEL 14
RETURN 14

exit routine, VDEFINE service 305
exits, CLIST attention 4

F
FI 337
file tailoring services 16
FILESTAT 79
FILESTAT service 20
FILEXFER service 20, 80
find table variable TBSARG 273
finding a library member 165
FORTRAN

example 8
general call format 5, 8
high-order bit generation 6
ISPEX alternate name 5
ISPLNK alternate name 5
lastrc variable 8
passing arguments 8
return code variable 13
return codes from services 13, 15
variable names 4, 5

fragments, syntax diagrams xi
FRAME 337
freeing a data set from association with a

data ID 136
FTCLOSE service

description 83
example 83, 85

FTERASE service
description 85
example 86

FTINCL service
description 86
example 87

FTOPEN service
description 88
example 89

function commands, definition 259
function variable pool, LMMDISP,

variable saved 153
function variables, define in function pool

(VDEFINE) 298

G
generic search argument, specification of

TBSARG 273
TBSCAN 279

get a copy of variable (VCOPY) 296
get row from table (TBGET) 263
get variable from shared pool or profile

pool(VGET) 311
GETMSG service

description 20, 89
example 91

graphics interface mode, for 3290
terminal 93

GRERROR service 91
GRINIT service

description 92
example 94

GRTERM service 94

I
I/O and command routines, return codes

from 15
including file tailoring skeleton

(FTINCL) 86
initializing edit recovery 65
invoking

dialog management services 2
services 23

invoking a dialog (SELECT) 211
ip_var_name 336
ISPEX, alternate call interface name for

FORTRAN and Pascal 5
ISPEX, call interface 5, 8
ISPEXEC

call interface 3, 5, 7
command invocation 3, 7
using DM services 2

ISPF library, defined 18
ISPF variables, running on behalf of

client 414
ISPF, ISPQRY, testing if active 2
ISPF/PDF services

BROWSE 18
command invocation 3
description of 18
EDIF service 18
EDIT 18
EDREC 18
introduction to 1
invoking 2
notation conventions 2
prerequisites 1
with dialog management service 3

ISPFILU ddname 95
ISPLINK

call interface 5, 8
parameters 5, 14

ISPLINK routine, invoking DM
services 2

ISPLNK
alternate call interface name for

FORTRAN 5
alternate call interface name for

Pascal 5
call interface 5
parameters 8

ISPLUSR ddname 95
ISPMUSR ddname 95
ISPPUSR ddname 95
ISPQRY, testing if active 2
ISPSUSR ddname 95
ISPTABU ddname 95
ISPTUSR ddname 95

J
JSON

data structures
between ISPF and client 341
sent from client to ISPF 411
sent from client to TSO 410
sent from ISPF to client 343
sent from TSO to client 341

ISPF variables 414

426 z/OS V2R2 ISPF Services Guide

K
keyboard

navigation 417
PF keys 417
shortcut keys 417

keyword parameter 3
keyword parameter, coding requests for

services 6
keywords, syntax diagrams xi

L
LANG keyword 213

CREX parameter 213
lastrc variable

APL2 9
FORTRAN 8
Pascal 8

LIBDEF null statement 95, 106
LIBDEF service 20, 94
library

opening 14
renaming 197

library access services 16
line length on LIST service 111
line mode

automatic entry 37, 213
non-automatic entry 37, 213

list data set, writing to 20, 109
LIST service description 20, 109
LMCLOSE 16
LMCLOSE service, description 115
LMCOMP 16
LMCOPY 16
LMCOPY service, description 117
LMDDISP 16
LMDDISP service, description 121
LMDFREE 16
LMDFREE service, description 124, 136
LMDINIT 16
LMDINIT service, description 125
LMDLIST 16
LMDLIST service, description 128
LMERASE 16
LMERASE service, description 133
LMFREE 17
LMFREE service, description 136
LMGET service

DBCS considerations 139
description 17, 137

LMINIT
ddname

to BROWSE 33
to EDIT 70
to VIEW 318

description 17, 142
LMMADD 17
LMMADD service

description 147, 152
statistical variables 148, 153
ZLMSEC 149

LMMDEL service 150
LMMDISP 17
LMMFIND 17
LMMFIND service

description 165

LMMFIND service (continued)
statistical variables 167

LMMLIST 17
LMMLIST service

description 170
FREE option 171
LIST option 171
statistical variables 171

LMMOVE 17, 174
LMMOVE service, description 174
LMMREN 17, 178
LMMREN service, description 178
LMMREP 17, 180
LMMREP service

ZLMSEC 181
LMMSTATS 17
LMMSTATS service, description 182
LMOPEN 17
LMOPEN service

description 187
INPUT/OUTPUT options 186

LMPRINT 17
LMPRINT service, description 188
LMPUT 17, 116
LMPUT service

DBCS considerations 190
description 191

LMQUERY 17
LMQUERY service, description 193
LMRENAME 17
LMRENAME service, description 197
LMREP service

description 180
statistical variables 181

LMxxxxxx - library access services 16
LNCT Search-For process statement 17
load module search order 3
LOG service

description 21, 199
example 199

logging a message (LOG service) 21
lu_var_name 336

M
mask association with dialog variables

(VMASK) 328
member

copying 117
deleting 150
erasing 133
finding 165
renaming 178
replacing 180

member list
adding a member 161
creating 170
dialog variables saved 153
displaying 154
freeing storage space associated

with 164, 170
getting the next member 157, 173
putting information in the line

command field and the user data
field 159

Member List Dialog Service,
MEMLIST 200

MEMLIST 200
message library, LIBDEF definition 104
message logging (LOG service) 21
messages, setting (SETMSG) 219
model sets, example 234, 252
modify a table row

TBMOD 265
TBPUT 269

move current row pointer (CRP) 284
TBBOTTOM 284
TBSCAN 284
TBSKIP 284
TBTOP 284, 286

moving data set members 174
multicultural support, for numeric

representation 288
MULTX mode

on LMGET service 138
on LMPUT service 190

N
name-list, VSYM service 335
naming restrictions for dialog

functions 214
navigation

keyboard 417
NEST keyword 214
NEWAPPL

data element search order 97
description of command

procedures 215
NOGUIDSP 337
Notices 421
numeric value parameter, coding requests

for services 6

O
open a table (TBOPEN) 267
open and create a table

(TBCREATE) 229
opening a data set 186
opening skeleton files (FTOPEN) 88

P
page eject on list data set 112
PANEL 337
panel definition, used by TBDISPL 16
parameters

coding rules for service requests 3, 6
specified as variables 10
used as symbolic variables 7

partition mode for 3290 terminal 93
Pascal

general call format 8
ISPEX alternate name 5
ISPLINK alternate name 5
lastrc variable 8
passing arguments as variables or

literals 9
return code registers 13
return code variable 13
variable names 4, 5

Index 427

PASSLIB
data element search order 97
description of command

procedures 216
PDF services, with edit macros 1
percent (%) sign, beginning a command

with 37, 213
PL/I

call format using ISPEXEC 7
call format using ISPLINK 5
example of statements you should

use 10
high-order bit generation 6, 8
PLIRETV build-in function should

use 13
return codes 13
return codes from services 13, 15
using literals in assignment

statements 10
PLIRETV build-in function 13, 15
pop-up window, and EDIT service 67
POSITION, TBDISPL parameter 242
positional parameters, command

invocation 3
PQUERY service, description 21, 202
printing data sets 188
PROFILE parameter

on VGET service 311
put variables in shared pool or profile

pool (VPUT) 331

Q
QBASELIB 204
QBASELIB service 21
QLIBDEF service 21
QLIBDEF service, description 206
QTABOPEN service 21, 207
Query Base Library Information,

QBASELIB 204
QUERYENQ service 21, 208

R
RACF (Resource Access Control

Facility) 32
read a table into virtual storage

(TBOPEN) 267
reading a data set record 137
reading row from table

TBBOTTOM 225
TBGET 263
TBSCAN 279

reinitialization section of panel definition,
panel processing considerations 51

remove definition of variables from
function pool

VDELETE 308
VRESET 334

REMPOP service
description 20, 210
relation to control service 36
return codes 208, 211

renaming a member 178
renaming an ISPF library 197
repeatable items, syntax diagrams xi

replace a data set member 180
replace variable in function pool

(VREPLACE) 333
reset table variables to nulls

(TBVCLEAR) 294
reset variables 334
restrictions on member expansion and

member part lists
I/O and command routines (return

codes) 13
service (return codes) 15

retrieve variables from shared pool or
profile (VGET) 311

retrieving a row from table
TBBOTTOM 225
TBDISPL 236
TBGET 263
TBSCAN 279
TBSKIP 284

return codes
from services 13
I/O and command routines 15

RETURN mode, effect on error
processing 14

RETURN-CODE
COBOL built-in variable 13
system variables to format error

messages 15
row deletion (TBDELETE) 232
row table services 19
row, determine existence (TBEXIST) 262
ROWID, TBDISPL parameter 242
rows of a table, content 18

S
save and close table (TBCLOSE) 226
save table (TBSAVE) 277
search argument, specification of

TBSARG 273
search, a table (TBSCAN) 279
SELECT command

NEWAPPL 211
PASSLIB parameter 216

SELECT service
ADDPOP parameter 15, 213
BARRIER keyword 213
description 211
example 219
LANG keyword 213
NEST keyword 214

sending comments to IBM xvii
service call, general call format 5
service interface routines 2, 5
service name parameter, coding on

service requests 6
services

command procedure format 1
description 1, 279
FILESTAT 20
FILEXFER 20, 80
QBASELIB 21
QLIBDEF 21
QTABOPEN 21
QUERYENQ 21
TRANS 21
WSCON 21

services (continued)
WSDISCON 21

services description
CONTROL 20
display 15
file tailoring 16
LOG 21
PQUERY 21
table 18

SETMSG service
description 16, 219
example 221

setting row pointer
TBBOTTOM 225
TBDISPL 225, 236
TBSCAN 225, 279
TBSKIP 225
TBTOP 293

setting, processing modes
(CONTROL) 34

SETTINGS option, affect on LIST
service 111

SHARED parameter
on VGET service 311

shortcut keys 417
single name parameter, coding on request

for services 6
SISPSASC 3
sort information record 286
spacing on list data set 112
SSI, returning value of 154, 167
statistical information

setting and storing statistics 182
variables

LMMADD 148
LMMFIND 167
LMMLIST 171
LMMREP 181

storing statistics 182
summary of changes xix
SYMDEF parameter

on VGET service 312
SYMNAMES parameter

on VGET service 312
syntax diagrams, how to read xi
syntax rules, services requests

(parameters) 6

T
table

adding or updating information 222
columns 18
definition 18
rows description 18

table display (TBDISPL) 233
table services

description 18
general services 18
row services 19

TBADD service
description 222
example 224

TBBOTTOM service
description 225
example 226

428 z/OS V2R2 ISPF Services Guide

TBCLOSE service
description 226
example 228, 252

TBCREATE service
description 229
example 231

TBDELETE service
description 232
example 233

TBDISPL service
control variables related to 242
description 16, 233
example 240, 252
hints, tips, and techniques 244
notes about 257
system variables related to 240
use with other services 243
using 233

TBEND service
description 260
example 261

TBERASE service
description 261, 262

TBEXIST service
description 262
example 263

TBGET service
description 263
example 265

TBMOD service
description 265
example 267

TBOPEN service
description 267
example 252, 269

TBPUT service
description 269
example

command procedure function 252
using function variable pool

values 270
using with TBDISPL service 252

TBQUERY service
description 271
example 273

TBSARG service
description 273
example 276

TBSAVE service
description 277
example 279

TBSCAN service
description 279
example 283

TBSKIP service
description 284
example 286

TBSORT service
description 286
example 288

TBSTATS service
description 289
example 293

TBTOP service
description 293
example 294

TBVCLEAR service
description 294
example 295

title_var_name 337
trademarks 423
TRANS service 21
TRANS service, description 295
translate CCSID data (TRANS) 295

U
update row in table

TBMOD 265
TBPUT 269

update variables in shared pool or profile
pool (VPUT) 331

use count
TBCLOSE (close and save a

table) 227
TBCREATE (create a new table) 231
TBEND (close a table without

saving) 260
user interface

ISPF 417
TSO/E 417

V
variable model lines, use 246
variable services summary 19
variables

associate edit mask with
(VMASK) 328

clearing to nulls (TBVCLEAR)
table 294

copy (VCOPY) 296
define in function pool

(VDEFINE) 298
erase from shared profile pool

(VERASE) 309
passed as parameter to services 4
remove definition from function pool

(VRESET) 334
remove definition of from function

pool (VDELETE) 308
replace in function pool

(VREPLACE) 333
reset 334
retrieve from shared pool or profile

pool (VGET) 311
TBDISPL parameters 242
update in shared pool or profile pool

(VPUT) 331
variables, syntax diagrams xi
VCOPY service

description 296
example 298
used to access system variables 296

VDEFINE service
description 298
examples 304, 306
exit routine 305

VDELETE service
description 308
example 309

VERASE service
description 20, 309
example 310
using 309

VGET service
accessing 311
accessing application profile

pool 313
View Interface service 321
VIEW service

description 313
recovery mode 314
recursive use 314

VIIF service 321
VL keyword assembler language 6, 8
VMASK service

description 328
example 331

VPUT service
accessing application profile

pool 331
accessing read-only extension 332

VREPLACE service
description 333
example 334

VRESET service
description 334
example 334

VSYM service
name-list 335

W
workstation command 214
workstation command var 215
Workstation Connection

WSCON service 335
Workstation Disconnection

WSDISCON service 339
Write data set list dialog 121
writing a message to log file (LOG) 199
writing a record to a data set 190
WSCMD 214
WSCMDV 215
WSCON 335
WSCON service 21

BKGRND 337
buf-len 338
buffer 338
character_set 337
codepage 337
FI 337
FRAME 337
ip_var_name 336
lu_var_name 336
NOGUIDSP 337
PANEL 337
title_var_name 337

WSDISCON 339
WSDISCON service 21

buf-len 339
buffer 339

Index 429

Z
ZDSxxxx dialog variables 56
ZEDBDSN 76
ZEDROW 76
ZEDTDSN 76
ZEDTMEM 76
ZEDTRD 76
ZEDUSER 67, 314
ZEDUSER extension variable 76
ZEIUSER extension variable 65
ZERRALRM 14
ZERRALRM system variable 14
ZERRHM 14
ZERRHM system variable 15
ZERRLM 14
ZERRLM system variable 15
ZERRMSG 14
ZERRMSG system variable 15
ZERRSM 14
ZERRSM system variable 15
ZLC4DATE 149, 153
ZLCDATE 148, 153
ZLCNORC 149, 153
ZLCNORCE 153
ZLEXT 153
ZLINORC 149, 153
ZLINORCE 153
ZLLCMD 153
ZLLIB 153, 167
ZLM4DATE 149, 154
ZLMDATE 148, 154
ZLMEMBER 154
ZLMNORC 149, 154
ZLMNORCE 154
ZLMOD

LMMADD, add a member to a data
set 148

LMMDISP, member list service 154
LMMFIND, find a library

member 168
LMMREP, replace a member of a data

set 181
ZLMSEC 149, 154, 168, 181
ZLMTIME 149, 154
ZLMTOP 154
ZLPDSUDA 154
ZLSSI 154, 167
ZLSTLPP system variable 112
ZLSTNUML 112
ZLSTTRUN system variable 111
ZLUDATA 154
ZLUSER 149, 154
ZLVERS 148, 154
ZTDMARK system variable 241
ZTDMSG system variable 241
ZTDROWS system variable 241
ZTDSELS system variable 241
ZTDTOP system variable 235, 242
ZTDVROWS system variable 242
ZTEMPF system variable 88

430 z/OS V2R2 ISPF Services Guide

����

Printed in USA

SC19-3626-01

	Contents
	Figures
	Preface
	Who should use this document?
	What is in this document?
	How to read the syntax diagrams

	z/OS information
	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS Version 2 Release 2 (V2R2)
	Summary of changes for z/OS Version 2 Release 1 (V2R1)

	What's in the z/OS V2R2 ISPF library?
	Chapter 1. Introduction to ISPF services
	Description of the services
	Using ISPQRY to test whether ISPF is active
	Invoking the ISPF services
	Load module search order
	Invoking services from command procedures
	The ISPEXEC interface
	ISPEXEC parameter conventions
	Using command invocation variables
	Attention interrupt handling
	Passing dialog variables as parameters

	Invoking ISPF services with program functions
	The ISPLINK interface
	CALL ISPLINK parameters
	The ISPEXEC interface
	CALL ISPEXEC parameters
	Using parameters as symbolic variables
	FORTRAN and Pascal
	APL2
	PL/I
	COBOL
	C
	Assembler

	Return codes from services
	Command invocation return code variable
	Call invocation return code variables
	Return code of 12 or higher
	System variables used to format error messages
	Return codes from I/O and command routines

	A summary of the ISPF services
	Display services
	File tailoring services
	Library access services
	PDF component services
	Table services
	Variable services
	Miscellaneous services

	Chapter 2. Description of the ISPF services
	ADDPOP—start pop-up window mode
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	BRIF—Browse interface
	Command invocation format
	Call invocation format
	Parameters
	Dialog-supplied routines
	Read routine
	Command routine

	Return codes
	Read Routine Return Codes
	Command routine
	BRIF service

	Example
	Call invocation

	BROWSE—browse a data set
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	CONTROL—set processing modes
	Command invocation format
	Call invocation format
	ADDPOP/REMPOP service in relation to CONTROL service
	Parameters
	Return codes
	Examples
	Example 1:
	Example 2:
	Example 3:
	Example 4:

	DIRLIST—directory list service
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	DISPLAY—display panels and messages
	Command invocation format
	Call invocation format
	Parameters
	Using the COMMAND Option
	Return codes
	Examples
	Example 1: Display variables and message, set cursor position
	Example 2: Unknown command handled by DISPLAY
	Example 3: Unknown command handled by dialog
	Example 4: Command stack contains an invalid parameter
	Example 5: Display message in a pop-up window

	DSINFO—data set information dialog service
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	EDIF—Edit interface
	Command invocation format
	Call invocation format
	Parameters
	Dialog-supplied routines
	Read routine
	Write routine
	Command routine

	Return codes
	Read routine
	Write Routine Return Codes
	Command Routine Return Codes
	EDIF Service Return Codes

	Example
	Call invocation

	EDIREC - Initialize Edit Recovery
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	EDIT—edit a data set
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Examples
	Example 1: Edit a PDS member
	Example 2: Edit a workstation file
	Example 3: Edit a z/OS UNIX file

	EDREC—specify edit recovery handling
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Examples
	Example 1:
	Example 2:

	FILESTAT—statistics for a file
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	FILEXFER—upload or download file
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	FTCLOSE—end file tailoring
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	FTERASE—erase file tailoring output
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	FTINCL—include a skeleton
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	FTOPEN—begin file tailoring
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	GETMSG—get a message
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	GRERROR—graphics error block service
	Command invocation format
	Call invocation format
	Parameters
	Return codes

	GRINIT—graphics initialization
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	GRTERM—graphics termination service
	Command invocation format
	Call invocation format
	Return codes

	LIBDEF—allocate application libraries
	Application data element search order
	Command invocation format
	Call invocation format
	Parameters
	Usage notes
	LIBDEF Display utility
	User link libraries
	Message libraries

	Return codes
	Examples
	Example 1: The DATASET keyword
	Example 2: The EXCLDATA keyword
	Example 3: The LIBRARY keyword
	Example 4: The EXCLLIBR keyword
	Example 5: The STACK keyword
	Example 6: The STKADD keyword

	LIST—write lines to the list data set
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Formatting data to be written to the list data set
	List data set characteristics affect the LIST service
	Controlling line spacing, page eject, and highlighting
	How ISPF controls printer functions (CC not specified)
	How the dialog controls printer functions (CC specified)
	Using system variables ZLSTNUML and ZLSTLPP

	How carriage control characters affect truncation
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	LMCLOSE—close a data set
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	LMCOMP—compresses a partitioned data set
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	LMCOPY—copy members of a data set
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	LMDDISP—data set list service
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	LMDFREE—free a data set list ID
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	LMDINIT—initialize a data set list
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Examples
	Example 1:
	Example 2:
	Command invocation
	Call invocation
	Call invocation
	Example 3:
	Command invocation
	Call invocation

	LMDLIST-list data sets
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Examples
	Example 1:
	Example 2:
	Example 3:

	LMERASE—erase a data set
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	LMFREE—free data set from its association with data ID
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	LMGET—read a logical record from a data set
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example 1
	Command invocation
	Call invocation

	Example 2
	Example 3 (MULTX)

	LMINIT—generate a data ID for a data set
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Examples
	Example 1:
	Example 2:
	Example 3:

	LMMADD—add a member to a data set
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	LMMDEL—delete members from a data set
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	LMMDISP—member list service
	Dialog variables
	DISPLAY option
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	GET option
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	PUT option
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	ADD option
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	DELETE option
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	FREE option
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	LMMFIND—find a library member
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	LMMLIST—list a library's members
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Examples
	Example 1:
	Example 2:
	Example 3:

	LMMOVE—move members of a data set
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	LMMREN—rename a data set member
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	LMMREP—replace a member of a data set
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	LMMSTATS—set and store, or delete ISPF statistics
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	LMOPEN—open a data set
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	LMPRINT—print a partitioned or sequential data set
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	LMPUT—write a logical record to a data set
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	Example (MULTX)

	LMQUERY—give a dialog information about a data set
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	LMRENAME—rename an ISPF library
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example
	Command invocation
	Call invocation

	LOG—write a message to the log data set
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example 1
	Example 2
	Example 3

	MEMLIST—member list dialog service
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	PQUERY—obtain panel information
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	QBASELIB—query base library information
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	QLIBDEF—query LIBDEF definition information
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	QTABOPEN—query open ISPF tables
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	QUERYENQ—query system ENQ data
	Command invocation format
	Call invocation format
	Parameters
	Variables returned in each row of the table
	Return codes

	REMPOP—remove a pop-up window
	Command invocation format
	Call invocation format
	Parameters
	Return codes

	SELECT—select a panel or function
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	SETMSG—set next message
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example 1
	Example 2

	TBADD—add a row to a table
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example 1
	Example 2

	TBBOTTOM—set the row pointer to bottom
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	TBCLOSE—close and save a table
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	TBCREATE—create a new table
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Examples
	Example 1
	Example 2
	Example 3

	TBDELETE—delete a row from a table
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	TBDISPL—display table information
	TBDISPL operation
	Operational results from user actions
	ZTDTOP and ZTDSELS variables

	Command invocation format
	Call invocation format
	Parameters
	Parameter processing
	Return codes
	Example
	System variables related to TBDISPL
	Panel control variables related to TBDISPL
	Parameter variables related to TBDISPL
	Using TBDISPL with other services
	Techniques for using the TBDISPL service
	Rules applying to variable model lines
	Example—panel using variable model lines
	Example—scroll indicator field in first variable model line

	Example—using the TBDISPL and TBPUT services
	Command procedure function
	Description of function steps

	TBDISPL summary

	TBEND—close a table without saving
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	TBERASE—erase a table
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	TBEXIST—determine whether a row exists in a table
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	TBGET—retrieve a row from a table
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	TBMOD—modify a row in a table
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	TBOPEN—open a table
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	TBPUT—update a row in a table
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	TBQUERY—obtain table information
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	TBSARG—define a search argument
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Examples

	TBSAVE—save a table
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	TBSCAN—search a table
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Examples
	Example 1
	Example 2
	Example 3

	TBSKIP—move the row pointer
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	TBSORT—sort a table
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example 1
	Example 2

	TBSTATS—retrieve table statistics
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	TBTOP—set the row pointer to the top
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	TBVCLEAR—clear table variables
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	TRANS—translate CCSID data
	Command invocation format
	Call invocation format
	Parameters
	Return codes

	VCOPY—create a copy of a variable
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	VDEFINE—define function variables
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Examples
	Example 1: Error message variable
	Example 2: Different data formats
	Example 3: Variables in a structure
	Example 4: Character data variables

	VDEFINE exit routine
	Return codes
	Example of Using the VDEFINE Exit

	VDELETE—remove a definition of function variables
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	VERASE—remove variables from shared or profile pool
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	VGET—retrieve variables from a pool or profile or system symbol
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Examples

	VIEW—view a data set
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Examples
	Example 1:
	Example 2:
	Example 3:

	VIIF—View interface
	Command invocation format
	Call invocation format
	Parameters
	Dialog-supplied routines
	Read routine
	Command routine
	Write routine

	Return codes
	Read routine
	Command routine return codes
	VIIF service return codes
	Write routine return codes

	Example
	Call invocation

	VMASK—mask and edit processing
	VMASK call invocation
	Parameters
	Return codes
	Example
	The VEDIT statement

	VPUT—update variables in the shared or profile pool
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	VREPLACE—replace a variable
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	VRESET—reset function variables
	Command invocation format
	Call invocation format
	Return codes
	Example

	VSYM—resolve system symbols
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	WSCON—connect to a workstation
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Example

	WSDISCON—disconnect from a workstation
	Command invocation format
	Call invocation format
	Parameters
	Return codes
	Usage notes
	Restrictions

	Appendix A. JSON API
	JSON data structures and variables used to communicate between ISPF and a client
	JSON data structures sent from TSO to client (message type 2)
	TSO Message JSON
	TSO message JSON example

	TSO prompt JSON
	TSO prompt JSON example

	JSON data structures sent from ISPF to client (message type 3)
	ISPF panel display JSON
	ISPF panel display JSON examples

	ISPF action JSON
	ISPF action JSON example

	JSON data structures sent from client to TSO (message type 7)
	TSO user response JSON
	TSO user response JSON example

	TSO action request JSON
	TSO action request JSON example

	JSON data structures sent from client to ISPF (message type 8)
	User response JSON
	User response JSON examples

	Client action JSON
	Client action JSON examples

	ISPF variables

	Appendix B. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming Interface Information
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

